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Preface

The purpose of this 15se-n is to compare the minimum distance

estimation technique with the best linear unbiased estimation technique

to determine which estimator provides more accurate estimates of the

underlying location and scale parameter values for a given Pareto

distribution. Two forms of the Kolmogorov, Anderson-Oarling, and

Cramer-von Mises minimum distance estimators are tested. A Monte Carlo

methodology is used to generate the Pareto random variates and the

resulting estimates. A mean square error comparison is then performed

to evaluate which estimator provides the best results. Additionally,

various sample sizes and shape parameters are also used to determine

whether they have an influence on a given estimator's performance.,
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H. Moore, for his guidance and direction throughout this thesis project.
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Finally, I am very grateful to my wife, Monica, for her love,

tolerance, and support throughout this thesis effort. I also Wish to
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Abstract

This investigation compared the minimum distance estimation

technique with the best linear unbiased estimation technique to

determine which technique provided more accurate estimates of the

location and scale parameter values when applied to the three parameter

Pdreto distribution. Six distinct minimum distance estimators were

developed. Of these six, two were based on the Kolmogorov distance, two

were based on the Anderson-Darling distance, and two were based on the

Cramer-von Mises distance. For a given sample size and Pareto shape

parameter, the location and scale parameters were estimated.

Additionally, varying combinations Of sample sizes (6, 9, 12, 1S, or 18)

and shape parameters (1.0, 2.0, 3.0, or 4.0) were tested to investigate

the affect of such changes.

A Monte Carlo methodology was used to generate the 1000 sample sets

of Pareto random variates for each sample size - shape parameter

combination with location and scale parameters both set to a value of 1.

The best linear ,nblased estimator and the six minimum distance

estimators then provided parameter estimates based on the sample sets.

Finally, these estimates were compared using the mean square error as

the evaluation tool. The results of this investigation indicate that

the best linear unbiased estimation technique provided more accurate

estimates of location and scale for the three parameter Pareto

"distribution than did the minimum distance estimation techniques.
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A COMPARISON OF ESTIMATION TECHNIQUES FOR

THE THREE PARAMETER PARETO DISTRIBUTION

I. Introduction

Parameter estimation is an important underlying technique in

statistical analysis. Although the statistician can perform some

analysis intuitively, estimation requires a specific method. For

example, if a statistician is asked to analyze some sample data, he

could order it in ascending order and draw a histogram reflecting the

occurrence frequency of values within certain intervals. Further, from

the histogram's shape, he could guess the underlying population

distribution. However, he could not easily determine the parameters

(e.g. mean, standard deviation) of the population. At this point, the

statistician needs a method to estimate the true population parameters

from the sample data. The method is called the estimator, and the

approximations based on the sample are the statistics (i.e. the

estimates). Mendenhall defines an estimator as "a rule which

specifically states how one may calculate the estimate based upon

information contained in a sample" (23:13). Using these rules, the

statistician can estimate the parameters of a population distribution

based on sample data drawn from the populetion. These estimates then

summarize the properties of the population for the investigator.

One estimation technique, called the best linear unbiased

estimator (BLUE), relies on a linear combination of order statistics

(10:26S). Order statistics are a set of variables arranged according



to their magnitudes. For instance, ordering a set of observed random

variables (e.g. fastest times in an automobile race) from smallest to

largest results in a set of order statistics (24:229). The best

linear unbiased estimator MT can be used to estimate an unknown

population parameter (8) where T is only dependent on the values of n

independent random variables. In addition, the estimator, T, must be

S~linear in the set of n random variables. The estimator must also

•- display the minimum variance among linear estimators and must be

-- unbiased (10:26S-266). In simple terms, unbiased means that on the

Ii average, the value of the estimator equals the parameter being estimated

• (33:197). Therefore, by combining a set of order statistics in a linear

'•" fashion, one can produce estimators for the underlying population
parameters. If these estimators also Possess the properties of minimum

variance and unblasedne55, then they are called best linear unbiased

estimators.

Another parameter estimation technique is minimum distance

estimation, introduced by Wolfowitz in the 19505 as a method which "in a

wide variety of cases, Will furnish super consistent estimators even

when cla551cal methods ... fail to give consistent estimators" (38:9). A

minimum d1stance estimator 15 consistent if, as the sample size

increases, the probability that the estimate approaches the true value

of the parameter also increases (33:199). The minimum distance

estimation technique 15 Closely related in theory to the statistical

procedure called goodness Of fit because a distance measure is the

i evaluation criteria for both procedures. In goodness Of fit, one tests

to"the sample data to identify Its underlying unknown distrvbution. A
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goodness of fit test is "a test designed to compare the sample obtained

with the type of sample one would expect from the hypothesized

distribution to see if the hypothesized distribution function 'fits' the

data in the sample" (8:189). Certain goodness of fit tests are based on

a distance measure between the sample and a hypothesized distribution

with known population parameters. Minimum distance estimation, however,

reverses the goodness of fit approach by assuming a probability

distribution type and then finding the values that minimize the distance

measure. These values become the estimates of the population parameters

(18:34).

Even though the minimum distance estimation technique was developed

in 1953, researchers have not extensively studied the technique until

kip recently. Parr and Schucany reported in 1979 that the method yields

"strongly consistent estimators with excellent robustness properties"

(27:5) when used to estimate the location parameter of symmetric

distributions (27:5). Robustness of an estimator is its ability to

serve as a good estimator even when the distribution assumptions are not

strictly followed (27:3). Additionally, several Air Force Institute of

Technology (AFIT) students, under the guidance of Dr. Albert H. Moore,

have completed thesis research projects by applying the minimum distance

estimation technique to specific distributions and comparing this

technique with other estimation methods. These former students include

Maj McNeese, working with the generalized exponential power

distribution; Capt Daniels, working with the generalized t distribution;

Capt Miller, working with the three parameter Weibull distribution; Capt

James, working with the three parameter gamma distribution; 2Lt

3



Bertrand, working with the four parameter beta distribution; and 2Lt

Keffer, working with the three parameter lognormal distribution.

Results have generally shown that minimum distance estimators provide

better estimates (i.e., estimates closer to the actual population

parameters) than the other technioues used (4:9).

The literature search reveals that the capabilities of the minimum

distance estimation technique have not been compared with those of the

best linear unbiased estimator with regard to the Pareto distribution, a

distribution of considerable value. The Pareto distribution has a

variety of uses in the commercial sector. Johnson and Kotz identify

several Pareto distribution analysis areas, including city population

distribution, stock price fluctuation, and oil field location (16:242).

In addition to commercial users, the Air Force also uses the Pareto

distribution in a number of analysis areas: time to failfre of equipment

"components (9), maintenance service times (14), nuclear fallout

particles' distribution (11), and error clusters in communications

circuits (3). In sum, the Pareto distribution proves to be a

distribution worthy of further investigation. Use of the minimum

distance estimation technique applied to the Pareto distribution offers

the researcher a chance to expand the frontier of knowledge in this

"area.

SPECIFIC PROBLEM

Researchers have not explored the potenti3l of the minimum distance

estimation technique to improve upon the best linear unbiased estimation

technique as applied to the Pareto distribution. A comparison of the

techniques in a controlled environment is needed to evaluate which

4



technique performs better under given circumstances. The controlled

environment should specify the sample size and the value of the

parameters of the underlying Pareto distribution function for each

comparison attempt.

RESEARCH QUESTION

For specified parameter values and sample sizes, which estimation

technique, minimum distance or best linear unbiased, performs better

when applied to the Pareto distribution?

GENERAL APPROACH

Monte Carlo analysis is the analytical method to be used to make

the estimation technique comparison. Monte Carlo analysis of estimation

methods consilts of three steps. First, one generates random variates

fronm a specified Pareto distribution (i.e., a Pareto distribution with

known parameters). Second, the two estimation techniques are used to

obtain parameter estimates based on the random sample data from the

first step. Third, the resulting estimates are compared to Jetermine

which estimation technique provided the better parameter estimates

"(4:27). The mean square error technique can be used to perform this

"evaluation (4:31).

SEQUENCE OF PRESENTATION

This report will proceed with five additional chapters. The second

chapter will discuss the estimation techniques used in this study while

the third chapter will present the Pareto Distribution. The fourth

chapter will describe the Monte Carlo analysis methodology used to make

-° S



the estimation technique comparisons. The fifth chapter will present

the results and conclusions of the study while the sixth chapter will

provide a short summary and some recommendations for future study in

this area.
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This chapter will first provide a discussion on estimation in

general, some desirable properties of estimators, and the empirical

distribution as an estimator of the true distribution. Following this

discussion, the two estimation techniques to be compared in this thesis

will be presented. First the best linear unbiased technique will be

discussed along with its inherent properties. Then the minimum distance

"technique will be presented in the three distance measure forms to be

used throughout the rest of this study.

ESTI OLM

"Estimation is part of a larger area of study called statistical

inference. The statistician makes inferences about the state of nature,

or the "way things really are" (22:187), based on data gathered from

experiments done to discover something about the state of nature

(22;187). Lindgren then narrows his discussion of statistical problems

to decision problems, eliminating the areas of experimental design and

representative data gathering.

Some statistical problems, notably in business
and industry, are decision problems, in which the
partial information about the state of nature provided
by data from experimentation is used as the basis of
making an immediate decision (22:188].

Lindgren then describes the general decision problem as consisting of "a

set or 'space' A of possible actions that might be taken, the individual

'points' of this space being the individual actions" (22:188). He

finally defines estimation problems as "those in which the action space

A is identical with the space of parameter values that index the family

7



of possible states of nature" (22:188). In this case, states of nature

co,.'d be described by the distribution function family members, each

member being defined through its own set of parameter values.

Pritsker describes the concept of parameter estimation by

presenting two supporting definitions. He first defines the

'population' as the set of data points consisting "of all possible

observations of a random variable" (31:46). He then defines a 'sample'

as being "only part of these observations" (31:46). A method to

summarize a set of data is "to view the data as a sample which is then

used to estimate the parameters of the parent or underlying population"

(31:46). Runyon and Haber simply define a parameter as "a summary

"." numerical value calculated from a population" (33:4).

Liebelt indicates that the estimation problem, defined earlier by

Lindgren, is difficult to solve. In fact, because there can be many

estimates regarding a problem, the solution is not unique. Therefore,

the statistician begins searching for the 'best' estimate; but, since

the criteria for a 'best' estimate is arbitrary, there cannot be an

optimal estimate to solve all problems (21:135-136). "Each problem may

require a different set of optimal criteria; the choice is always left

to the user of estimation theory" (21:136). So, the search always

continues for a better estimator. This thesis is a continuation of that

search.

Before we continue by listing and defining some of the agreed upon

properties of a good estimator, we must clarify the difference between

an estimator and an estimate. Mendenhall explains that an estimator is

"a rule which specifically states how one may calculate the estimate

based upon information contained in a sample" (23:13). However, when

8



the estimator is used to produce a particular value based on specified

sample data, "the resulting predicted value is called an estimate"

(23:13). Wine draws an analogy to describe the difference. He

indicates the distinction between the two is the same as the difference

between a function, f(x), and the evaluated functional value, f(c).

"f(x) is a variable defined in some domain of x, and f(c) is a constant

corresponding to a specified value of x equal to constant c"

(37:170-171). Before a sample is drawn, we have an estimator. After

the sample is drawn, the estimator produces a particular value which is

an estimate (37:171).

ESTIMATOR PROPERTIES

The search for better estimators continues; but, what is the

criteria for determining a good estimator? Certain properties of

estimators have been defined and seem to be reasonable guides for

choosing good estimators, although these criteria cannot be fully

"justified except on the basis of intuition" (21:136). This section

will discuss four of these desirable properties. If an estimator is to

be used in repeated samplings from the same population, then

unbiasedness is a desirable property; otherwise, a biased estimator

could possibly be found which provides better parameter estimates.

Additionally, a good estimator should be consistent, efficient and

invariant. Each of theLe properties will now be described in more

detail.

Unbiased Estimators. The first property a good estimator to be

used in repeated samplings from the same population is unbiasedness.

"Freeman defines an unbiased estimator as follows:

9



We have a population described by the density function
f(x;8), where f is knoun and the value of the parameter
is unknown. A random sample x.,x ,...,,x is drawn from
this population. The statistic t x.,x_,...,x) is an
unbiased estimator of the parameter 8 if

E(t) = (Z.1)

for all n and for any possible value of 8 [i1:ZZ9].

Wine points out that this definition "requires that the mean of the

sampling distribution of any statistic equals the parameter which the

statistic is supposed to estimate" (37:172). In other words, the

expected value o? the statistic t equals the parameter being estimated,

where "the expected value of a random variable x with density function

f(v) is defined as

E(x) v f(v)dv (2.2)

(21:85). Freeman defines the term density function as "a function

f(x.) which is connected to probability statements on the random

variable x by

p(x = = f'x.) (Z.3)

(10:18). Looking at unbiasedness from a slightly different perspective,

Liebelt says that unbiasedness "is desirable, for it states that in the

absence of Measurement error, and uncertainty in the estimation

procedure, the estimate becomes the true value' (21:137). Freeman adds

"a final note concerning unbiased estimators. He indicates that for an

estimator to be truly unbiased. Eq (2.1) "is required to hold for all

"sample sizes n" (10:229). There are cases when Eq (2.1) roughly holds

St10



only for very large sample sizes. In these cases, the estimator is

merely 'asymptotically unbiased' (10:229).

Unbiasedness is an important property for an estimator to have in

repeated samplings from the same population. The reason for this

Etatement becomes apparent when ane looks at what can happen if an

estimator is biased. "Any estimating process used repeatedly and which

on the average (mean) is not equal to the parameter leads to a sure

cumulation of error in one direction" (10:229). To avoid this

accumulation of error in one direction, the statistician seeks to find

and use unbiased estimators. However, in a single estimation situation,

unbiasedness may not be desireable. Instead, one could seek to minimize

the mean square error of the estimate which could then result in a

better estimate.

Consistent Estimators. The second property of a good estimator is

that of consistency. As the sample size increases, one would want the

risk associated with the estimator to decrease. "That is, the estimator

ought to be better when it is based on twenty observations than when it

is based on two observations" (25:172). This supposition portrays the

idea of consistency. "An estimator is consistent if for a large sample

there is a high probability that the estimator will be near the

parameter it is intended to estimate" (5:140).

A similar definition expressed by Wine uses the idea of

convergence to define a consistent estimator. An estimator, t, of the

parameter 0 is consistent if, for any small numbers d and 6, "there

exists an integer n"' such that the probability that [It - 01 < 6]

is greater than E1-d] for all n > n' " (37:171). This

"definition introduces the idea of convergence by saying, "given any

Z1



small 161, we can find a sample size large enough 50 that, for

all larger sample sizes, the probability that [t] differs from tha

true value 8 [by] more than 6 is as small as we please" (37:171).

Therefore, the estimator, t, converges in probability to 8 (37:171).

Consistency, then, implies that as 5ample sizes increase, the

probability also increases that the estimator provides estimates which

more closely approximate the true value of the parameier being

estimated.

Efficient Estimators. The third desirable property of a good

estimator is that of efficiency. Efficiency is generally used as a

measure to compare two estimators. The efficiency is the ratio of their

mean square errors. Mendenhall and Scheaffer indicate that the mean

square error can be written as the summation of the variance and the

square of the bias of an estimator (24:267).

Since variance is a measure of the dispersion of the distribution

of an estimator about the parameter value, the statistician seeks an

estimator with small variance. By selecting an estimator with the

smaller variance, he ensures that his estimates will converge more

rapidly to the true parameter value (32:155). Therefore, "one estimator

is said to be more efficient than another when the variability of its

sampling distribution is less" (33:198).

Invariant Estimators. The final property of a good estimator is

that of invariance. Invariance is particularly desirable when

functional transformations must be made regarding the parameter. As

Freeman states:

12



"We call a method of estimation invariant under
transformation of a parameter if, when the method
leads to t as the estimator of 8, the method also
leads to g(t) as the estimator of g(E). We can

speak of t as an invariant estimator for a certain

class of transformations g if, when the parameter 8

is transformed by g to g(O), the estimator t is

transformed to g(t) [10:233].

If the statistician is working with an invariant estimator where

the estimate of 8 is t, then he can conclude that his estimate for

8 + k is t + k and his estimate for k8 is kt (10:233).

Thus, the property of invariance permits the transformation of a

parameter to be translated into the transformation of its estimator.

Summary. Three desirable properties of an estimator are

"consistency, efficiency, and invariance. Unbiasedness is desirable when

the estimator is used in repeated sampling from the same population.

Unblasedness means that, on the average, the estimator equals the

parameter being estimated. Consistency means that as the tample size

increases, the estimator will more closely approximate the true

parameter value. Eff:-lency is a comparative measure between estimators

where the estimatcr with the smaller mean square error is more

efficient. Finally, invariance means that if a transformation operation

is performed on a parameter, the identical transformation can be

performed on the estimator resulting in the transformed estimator

becoming a valid estimator for the transformed parameter. Although

these properties are desirable, estimators generally do not possess all

of these properties. Therefore, the statisticians must find an

estimator with the properties needed for their particular applicetions.

13



", • EMPIRICAL DISTRIBUTION FUNCTION (EDF)

An empirical distribution is a distribution based solely on sample

values of a random variable. The empirical distribution can be thought

of as an estimation of the true underlying population distribution. The

empirical distribution is developed "by observing several values of the

random variable and constructing a graph S(x) that may be used as an

estimate of the entire unknown distribution function F(x) of the random

variable (8:59). Conover defines the empirical distribution as follows:

Let X1, Xe,.., X be a random sample. The empirical
distributlon function S(x) is a function of x, which
equals the fraction of X.s that are less than or equal
"to x for each x, -00( x (u [8:69].

"Based on this definition, the graph of the empirical distribution

"function, S(x), is a step function starting at zero. As each bimple

value (ordered from lowest to highest) is encountered, a step of height

I/n is entered on the graph. This procedure continues until all the

sample values have been entered and a height of one has been reached.

"S(x) resembles a distribution function in that it is a nondecreasing

function that goes from zero to one in height. However, S(x) is

empirically (from a sample) determined and therefore its name" (8:70).

The empirical distribution function is used a5 an estimator for the

population distribution function of the random variable (8:70).

From the empirical distirbution function, one can "compute the

expectation of the empiric random, variable, E(x). We have

n n

E(x) = (•= /n) = (1/n) i (.i= X, =l X (Z.4)

which is just the sample mean, x (S:137). Eq (2.4) uses the

14



discrete random variable form of the expected value definition.

Therefore, assuming the empirical distribution acceptably estimates the

population distribution leads to the sample mean being an acceptable

estimate for the population mean (5:138).

BEST LINEAR UNBIASED ESTIMATOR (BLUIE)

Knowing what properties are desirable in an estimator still

leaves the statistician with the problem of developing an estimator.

One estimator is called the best linear unbiased estimation technique.

As was mentioned in Chapter I, the BLU estimator is based on order

statistics, which is simply an arrangement of random variables in

order of magnitude (24:229). A population parameter (B) can be

estimated by a statistic (T) which depends only on the values of n

independent random variables, x,, . .. xn (10:Z65).

The title of this estimator indicates some of the properties that

it possesses. Namely, the estimator must be unbiased, 'best', and

* linear. As was discussed ealier in this chapter, an unbiased

estimator has a bias term equal to zero, and, on the average over many

trials, the estimator provides estimates equal to the parameter value.

Eq 2.1 states the property mathematically. In addition to being

unbiased, the BLU estimator must be 'best'. To be best among unbiased

estimators, the estimator must have the minimum mean square error

(10:26S). The mean square error is the sum of the variance term and

the square of the bias term (24:267). Since we are dealing with an

estimator which 1s inherently unbiased (i.e., the bias term equals

zero), the mean square error simply reduces to the variance term.

"Therefore, in this case, best implies minimum variance. Finally, the



• t ' BLU estlmator must be linear. Linearity demands that we consider only

"estimators which are linear in the random variables xl, . xn ,

for it is only in comparison with other esimators within this

restricted class that we can always find estimators [which are best

unbiased]" (10:266). Stated mathematically, the estimator appears as

* follows:

T c-x e .h. +cx (2.5)

where the coefficients (c.) must be determined (10:266).
,.•I i

"In addition to the properties described above, the best linear

' unbiased estimator possesses another desirable feature, that of

"*� invariance. Mood and Graybill indicate that BLU estimators are a subset

of least-squares estimators (25:349). Further, they state that, in

general, least square estimators do not possess the invariance property.

"There is one important case, however, when the invariant property holds

for least-squares estimators, and this is the case of linear functions"

* (25:350). Therefore, in addition to being unbiased, and possessing

minimum variance, the BLU estimator is also invariant.

MINIMUM DISTANCE (MD) ESTIMATOR

Chapter I presented a partial history and description of the

"minimum distance estimation technique. The efforts of Wolfowitz

culminated in his 1957 paper which refined his work toward "developing

the minimum distance method for obtaining strongly consistent estimators

(i.e., estimators which converge with probability one)" (39:75). In the

paper, he emphasized that his method could be used with a variety of

distance measuring techniques (39:75). Additionally, Wolfowitz si.azd
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" ':" that "it is a problem of great interest to decide which, if any,

definition of distance yields estimators preferable in some sense"

(39:76). This thesis will in part respond to this challenge, since

three distance measures will be used in the minimum distance method for

comparison against the best linear unbiased estimation method. The

three distance measures to be used are the Kolmogorov, the

Anderson-Darling, and the Cramer-von Mises discrepancy measures.

Wolfowitz finally summarizes the minimum distance method as follows:

The estimator is chosen to be such a function of the
observed chance variables that the d.f. of the observed
"chance variables (when the estimator is put in place of
the parameters and distributions being estimated) is

closest' to the empiric d.f. of the observed chance
variables [39:76].

Since 19S7, the minimum distance estimation technique has been

studied by many other statisticians and has been found to display other

desirable estimator properties. The technique has "been considered as a

method for deriving robust estimators by Knusel (1969) and Parr and

Schucany (1980)" (28:178). Additi.nally, Parr and Schucany indicate

that the method yields "strongly consistent estimators with excellent

robustness properties" (27:5) when used to estimate the location

parameter of symmetric distributions (27:S). They define robust

estimation as "efficient or nearly efficient (at a model) estimation

procedures which also perform well under moderate deviations from that

model" (27:2). They attempt to explain why the minimum distance

estimator possesses robustness properties:

It may well be inquired as to why an estimator obtained
by minimization of a discrepancy measure which is useful

for goodness-of-fit purposes (and, hence, in many cases
extremely sensitive to outliers or general discrepancies
"from the model) should be hoped to possess any desirable
robustness' properties. 't turns out that, in most
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r"
L cases . while the discrepancy measure itself may be

fairly sensitive to the presence of outliers, the value
which minimizes the discrepancy . . . is much less so (27:5-6].

Finally, they state that the Method presents a trade-off between

efficiency considerations and robustness considerations (28:179).

In addition to consistency, robustness and efficiency,

investigators have revealed other attractive features of the minimum

distance estimation technique. Parr and Schucany indicate that "minimum

distance estimators share an invariance property with maximum likelihood

estimators . . . It operates in a manner analogous to maximum likelihood

methods in simply selecting a 'best approximating distribution' from

those in the model" (27:9). Additionally, Parr states that the method

is very easy to implement. "Given a set of data, a parmetric model, and

"a distance measure between distribution functions, all that is needed is

an omnibus minimization routine to compute the estimator"

(26:1207-1208). Finally, minimum distance estimators provide meaningful

results even if the conjectured parametric model is incorrect.

MD-estimation still provides the best approximation in terms of

probability urits with regard to the conjectured distribution (26:1208).

"This is a feature not enjoyed by other estimation methods such as the

maximum likelihood" (26:1208). Therefore, MD-estimation can be a very

useful tool for the statistician.

The minimum distance estimation technique uses a distance measure

and, for this reason, is closely linked with certain goodness-of-flt

tests. As explained by Stephens, go,dness-of-fit statistics are

"based on a comparison of F(x) with the empirical distribution

function F (x)" (35:730). In a goodness-of-fit test, one is
n

interested in fitting an empirical distribution function, described
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9.

:- -:>. earlier, with a fully specified (i.e., with known paramters)

distribution function. The test for whether the fit is 'good' is

normally a measure ol distance oetween the two distribution curves. In

contrast, minimum distance estimation uses a parent distribution family

with certain unknown parameters. The estimates of the unknown

parameters are those parameter values which minimize the distance

measure between the empirical distribution and the parent distribution

being investigated. The three distanze measures to be used in this

study are described next.

Kolmooorov D.stance. The statistic suggested by Kolmogorov in

1933 is the largest absolute distance between the graphs of the

empirical distribution function, S(x), and the hypothesized

"distribution function, F(x.;G) measured in the vertical direction

(8:345). Symbolically, the Kolmogo-ov distance (D) is given by:.

D = suplF(x.;1) - S(x)lIi (2.6)

which reads D equals "the supremum, over all x, of the absolute

value of the difference F(x ;8) - S(x) " (8:347). Stephensi

provides a computational form for all of the distance measures to be

used in this study where he lets z F(x ), i= 1,2,... ,n For

the Kolmogorov distance, the computational form is as follows:

D max (1(n - z I
l-mx(i(n i

) max [z - (i-l)/n]
l~i(n i.

D = max (0+,D ) (2.7)

(35:731). These computational formulae provide the maximum distance
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betueen the empirical distribution function, which is a step function,

and the conjectured distribution function, Fix.;8).1

Cramer-von Mises Distance. The Cramer-von Mises statistic is

* actually a member of the Cramer-von Mises family of distance measures

whi-1 is "based on the squared integral of the difference between the

EDF and the distribution tested:

~2 {F00 2(28

S 0(F n(x) -F(x;O)) B(x) dx

The function . . . [(x)1 . . . gives a weighting to the squared

difference" (34:2). The Cramer-von Mises statistic is produiced by

setting the weighting function equal to one, O(x) = I (34:Z). The

computational form of the Cramer-von Mises statistic is given by

Stephens as follows:

n

LI = lZ - (Zi - i)/2n) + (i/12n)i= (Z.9)

(35:73i). This formula uses the same symbology as the computational

form of the Kolmogorov distance measure.

Anderson-Darling DistAnce. The Anderson-Darling distance

measure is actually another member of the Cramer-von Mises family. In

this case, however, the weighting factor is l/{u(l - u)} where

0 ( u ( I (27:4). "This weight function counteracts the fact that

the discrepancy [in Eq 2.91 between F (x) and Fix;8) is necessarily
n

becoming smaller in the tails, since both approach 0 and 1 at the

extremes (34:Z). Therefore, the Anderson-Darling weighting function

gives "greater importance to observations in the tail than do most of
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"4 'the EDF statistics" (34:Z). Stephens gives the computational form of

the Anderson-Darling statistic as follous:

2n

AZ n (2i - 1) In z. + in (I -)] )/n - n
-1) in( Z n+l-i (Z.

(35:731). Again, this computational formula uses the same symbology

used for the other two distance measures' computational formulae.
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III. Pareto Distribution P

This chapter will first relate the history of the Pareto t
distribution. A summary of various socio-economic and military

applications will follow this historical perspective. Then a detailed

description of the Pareto function will be presented. Finally, this

chapter will describe the best linear unbiased and the minimum distance

estimation techniques as applied specifically to the Pareto function.

HISTORY

In 1897 Vilfredo Pareto (1848-1923), an Italian-born Swiss

professor of economics, formulated an empirical law which bears his name

(16:233). Pareto's Law was based on his study of the distribution of

incomes in several European countries during the nineteenth century.

The mathematical results of the study were summarized as follows:

N = Ax- (3.1)

where N 1s the number of people haveing incomes equal to or greater than

income level x. A and c are parameters where c is sometimes referred to

as Pareto's constant or the shape parameter (16:233). Pigou summarized

Pareto's findings in the following statement:

It is shown that, if x signify a given income and N

the number of persons with incomes exceeding x, and
if a curve be drawn, of which the ordinates are

"logarithms of x and the abscissae logarithms of N,
this curve, for all the countries examined, is

approximately a straight line, and is, furthermore,
"inclined to the vertical axis at an angle, which, in

-_ no country, differs by more than three or four degrees
* - from 56%. This means (since tan 56" = 1.5) that, if

the number of incomes greater than x is equal •o N, the

"number greater than mx is equal to [ N(l/m) 1,
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whatever the value of m may be. Thus the scheme of income
distribution is everywhere the same [29:647).

The Pareto premise, then, as deduced from his mathematical findings and

stated in economic rather than mathematical terms is as follows:

Hence, what this thesis amounts to in effect is that,
on the one hand, anything that increases the national
dividend must, in general, increase also the absolute
share of the poor, and, on the other hand--and this is
the side of it that is relevant here--that it is impossible
for the absolute share of the poor to be increased by
any cause which does not at the same time increase the
national dividend as a whole . . we cannot be confronted
with any proposal the adoption of which would both make
the dividend larger and the absolute share of the poor
smdller, or 'vice versa' [Z9:6481.

Pareto felt, therefore that his law was *universal and

inevitable--regardless of taxation and social and political conditions"

%16:233).

Since the statement of Pareto's Law, several renowned economists

have refuted the law's sweeping applicability (16:233). In particular,

Pigou identified defects in its statistical basis, arguing that the

differences in inclination of the plotted lines were significant.

Additionally, he argues that such a generalization from an empirical

study under certain conditions (certain avenues of income such as

inheritance and personal effort) cannot justifiably be extended to all

social conditions (29:649-655).

The general defence of "Pareto's Law" as a law of even
limited necessity rapidly crumbles. His statistics
warrant no inference as to the effect on distribution of
the introduction of any cause that is not already present
in approximately equivalent form in at least one of the
communities--and they are very limited in range--from which
these statistics are drawn. This consideration is really
fatal; and Pareto is driven, in effect, to abandon the

Su whole claim . . . [29:654-6551.

"Additv-nally, Champernowne identifies weaknesses in the Pareto Law.
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" .~'. He indicates that the use of the Pareto constant as a measure of income

distribution inequality between communities suffers from two problems.

Firstly, the measure only addresses income before taxation. Secondly,

the measure only applied to income distributions among the rich and

breaks down when applied to those with medium incomes (7:609).

Finally, Fisk discusses the value of the Pareto distribution

regarding its ability to describe distributions of income. He states

that the "Pareto curve fits income distributions at the extremities of

the income range but provides a poor fit over the whole income range"

(12 :171).

Therefore, Pareto's Law with regard to income distributions is no

longer highly touted. However, other disciplines have found application

"-" - of the Pareto distribution to be very useful.

APPLICATIONS

Socio-economic Related Applications. Although the Pareto

distribution was formulated as a reflection of income distribution, the

Pareto distribution has proven to be useful in many other areas of

investigation. Johnson and Kotz indicate the Pareto distribution can be

useful in describing many socio-economic or naturally occuring

quantities. Examples include the distributions of city population

sizes, fluctuations in the stock market, and the occurrence of natural

resources. The Pareto is useful in these areas because they often

"display statistical distributions with very long right tails (16:242).

"Koutrouvelis listed some additional areas where the Pareto

distribution had successfully been used. These areas include: business

mortality rates, worker migration, property values and inheritance, and
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"service times in queues (19:7).

Johnson and Kotz additionally identified the area of personal

income investigation as an area where the Pareto distribution was

applicable (16:242). In 1982, Wong used the Pareto in his analysis of

income. He indicates that many individuals underreport their true

incomes to avoid a portion of their tax payments. Wong shows the

applicability of the Pareto in reflecti ig this underreporting phenomena

(40:1).

Militarily Related Applications. In addition to socio-economic

interests, the Pareto distribution has proven useful in many areas of

interest to the military. These areas include fallout mass-size

distributions, interarrival time distributions, and failure time

distributions. This section will address each of these areas in turn.

"E. C. Freiling conducted a study for the U.S. Naval R.diological

Defense Laboratory concerning a comparison of distribution types for

describing "the size distribution of particle mass in the fallout from

land-surface bursts" (11:1). In this study, he compared the lognormal

distribution with the Pareto. He determined that with the effects of

the uncertainties playing in the problem, the differences in descriptive

ability of the two distributions were trivial. He indicated that the

lognormal "has the esthetic advantage of an observationally confirmed

theoretical basis in the case of airburst debris" (11:12). However, if

truncation is required, the Pareto distribution has "the practical

advantage of simplifying further calculations of particle surface

distribution" (11:12).

"A Pareto description of interarrival times has played an important

part in two other studies, one involving interarrival times in general
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",• and the second involving telephone circuit error clustering. Bell,

Ahmad, Park and Lui performed the general interarrival time study

supported by a grant from the Office of Naval Research. They indicate

that interarrival time distributions are usually thick-tailed as

compared to Gaussian or Poisson processes for like distributions. They

state that the Pareto can provide a variety of tail thicknesses

depending on the value of the shape parameter employed (2:1). In the

telephone circuit paper, Berger and Mandelbrot propose a new model to

describe error occurrence on telephone lines. They conclude that the

Pareto distribution can well be used to approximate the distribution of

inter-error intervals.

Finally, the Pareto distribution has proven useful in life testing

and replacement policy situations. Davis and Feldstein show the Pareto

as a competitor to the Weibull distribution with regard to time to

failure of a system since, "unlike the Weibull, it does not give rise to

infinite hazard at the origin nor hazard increasing without bound"

(9:306). Kaminsky and Nelson illustrate the use of the Pareto in

developing replacement policy. The Pareto can be used to predict

component replacement times based on an accumulation of early failure

data (17:145).

PARETO FUNCTION

The mathematical formulation of Pareto'G Law on income distribution

is shown in Eq (3.1). This law corresponds to the following Pareto

probability density function as given by Johnson and Kotz:

"P(x) Pr[X ) x] (a/x) a)@, c)0, x)a (3.2)
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In this equation P(x) gives the probability that income is equal to or

greater than x, while a corresponds to some minimum income (16:234).

The cumulative distribution function (cdf) of X resulting from Eq (3.2)

gives the following Pareto distribution:

F (x) = I - (a/x)c a)@, c)0, x)a (3.3)x

(16:234). During Mandelbrot's investigation concerning the Pareto

distribution, he distinguishes between two forms of the Pareto Law: the

Strong Law of Pareto and the Weak or Asymptotic form of the Law of

Pareto. Mandelbrot's Strong Law of Pareto is of the form shown in Eq

(3.3) and is written as follows:

-c

F (x) (x/a) x)a
- 1 x(a (3.4)

Mandelbrot's Weak or Asymptotic form of the Pareto Law is written as
follows:

1 - F (x) ~ (x/a)- as x -- C (3.5)x

The Weak form implies that if the log of the left side of the relation

is graphed against log x "the resulting curve should be asymptotic to a

straight line with slope equal to f-c] as x approaches infinity"

(16:245).

Grougino Pareto Distributions by Kind. There are several versions

of the Pareto cumulative distribution function. Often, these versions

are grouped according to 'kind'. There are three labels used in this

type of grouping scheme: Pareto distributions of the first kind, of the
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second kind, and of the third kind.

A distribution of the form shown in Eq (3.3) is referred to as a

Pareto distribution of the first kind (16:234). A Pareto distribution

of the second kind is written as follows:

F(x) = 1 - K/[(x + C) (3.6)

(16:234). This form differs from the Pareto distribution of the first

kind through the addition of another quaniity, C, in the denominator of

the second term on the right hand side of the equation.

In addition to the two distribution kinds above, Pareto suggested a

third law, the distribution of which Mandelbrot calls a Pareto

distribution of the third kind. The mathematical form is as follows:

-Fx) = 1- Ek e-hX/x /( C)C1  (3.7)

z

(16:234). The Pareto distribution of the third kind degenerates to that

of the second kind when h - 0.

Groupina Pareto Distributions by Parameter Number. Perhaps a more

understandable method of grouping the various forms of the Pareto

distribution function is by grouping them according to the number of

parameters the form contains. However, before describing these

functions, three basic parameters will be defined.

Hastings and Peacock describe three types of parameters which

always have a physical or geometrical meaning. These three parameters

are those of location (a), scale (b) and shape (c). This study will use

this symbology when using these parameters. The location parameter, a,

is "the abscissa of a location point (usually the lower or mid point) of
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the range of the variate" (15:20). The scale parameter, b, "determines

the scale of measurement of the fractile, x" (15:20). A fractile is a

general element within the range of the variate, X (15:5). Finally, the

shape parameter, c, "determines the shape (in a sense distinct from

location and scale) of the distribution function (and other functions)

within a family of shapes associated with a specified type of variate"

(15:20). Using the normal distribution as an example, the mean is the

location parameter because It specifies a kind of mid point for the

distribution. The standard deviation is the scale parameter because it

provides a fractile measurment device for the distribution. "The normal

distribution does not have a shape parameter" (15:20). With this

background on location, scale and shape parameters, we can now proceed

with the disussion on grouping Pareto distributions according to the

number of parameters contained in the distribution expression.

The most commonly used form of the Pareto distribution is the two

parameter form; however, there is a more general form which uses all

three basic parameters of location (a), scale (b), and shape (c). This

section will present this more general form and show how the simpler

forms are derived from it. The three parameter form of the Pareto

distribution is written as follows:

F(x) I - [I + (x-a)/b] x)a (3.8)

where b)O and a)@ (20:Z18). As stated earlier, the notation of

Hastings and Peacock is used in this equation and in those that follow.

"The two parameter Pareto distribution is the most common form of

the distribution and is derived from Eq (3.8) by eliminating either the
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location or the scale parameter from the equation. One way to obtain a

two parameter distribution function is to set the location parameter

equal to zero. For a=@ we obtain a Pareto distribution of the second

kind as shown in Eq (3.6) where K=bc and C=b. This special case is

sometimes referred to as the Lomax distribution (Z1:Z18). Another

method of effectively eliminating one of the parameters is to set the

location parameter equal to the scale parameter. Setting a=b in Eq

(3.8) results in the usual formulation of the Pareto distribution and is

the Pareto distribution of the first kind as shown in Eq (3.3).

The simplest form of the Pareto distribution is the one parameter

version which can be obtained by setting both the location and the scale

parameter equal to one. Setting a=b=l in Eq (3.8), the foliowing

ditribution function results:

-S.

F(x) = 1 - ( x~l (3.9)

This one parameter form 1s regarded as the 'standard form' of the Pareto

distribution (16:240).

Since most of the many versions of the Pareto distribution can be

derived from the more general three parameter model, this thesis

investigates the three parameter distribution. This should ensure that

results of this study can be used in a wider variety of applications

where estimation is required.

PARAMETER ESTIMATION

This section describes the estimation methods used in this study as

applied specifically to the Pareto distribution. First the best linear

unbiased estimators are presented along with the procedure used to
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transform these estimators into a computational form. Then the minimum

distance estimation formulas will be adapted to the Pareto distribution.

Best Linear Unbiased Estimator. As was mentioned by Kulldorff and

Vannman, the general, three parameter form of the Pareto cumulative

distribution function has received little attention from statisticians

working on the development of estimators (20:218). Hence, many

estimators have been developed for special cases of the two parameter

formulation while few estimators are available for study of the more

general distribution form.

Kulldorff and Vannman successfully derived BLU estimators for three

cases of the general Pareto distribution where the shape parameter is

always assumed to be greater then two. Specifically, these cases are:

scale parameter when the location and shape are known; location

parameter when the scale and shape are known; and location and scale

parameters when the shape is known (20:218-224). The estimators

developed for the third case are the estimators used in this study,

since only shape parameters will be explicitly specified for the Pareto

distribution being investigated. However, these estimators are useful

only when c>2

Vannman later presented the BLU estimators for the same three

"cases shown above with the condition that the shape parameter is equal

"to or less than two (36:704). Therefore, his estimators will be used

for the cases uhen c(Z

BLUEs for Shape Greater Than 2. As stated earlier,

Kulldorff and VJnnman developed BLU estimators for both the location

and scale parameters with the shape parameter known and greater than

two. From Chapter II. we recall that the BLU estimator is based on
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order statistics where the random variables are arranged in order of

magnitude from smallest to largest (24:ZZ9). Therefore, the elements

of the drawn sample are ordered from smallest to largest to provide the

order statistics where x(1) i '(2) ( ... i x( . Here x( is the

smallest valued observation and x(n) is the largest valued observation

from the sample of size n. Since a BLU estimator must take the form of

a linear combination of the ordered random variables, the BLU estimators

for the location and scale parameters of the Pareto distribution with

specified shape must be a linear combination of the ordered sample

observations, where the coefficients of these observations are to be

determined. In developing their BLU estimators, Kulldorff and Vannman

derived this linear relationship and determined the coefficients which

are based on the sample size and the specified shape parameter. The BLU

estimators for location, a, and scale, b, are written as folloWs:

a = (I) - Y/[ (nc-l)(nc-Z) ncD 1 (3.10)

b = Y(nc-1) / f (nc-l)(nc-Z) ncD I

A

= (nc-l)[x (1)- a] (3.11)

The authors note that in the speci.l case when a=b , the BLU estimator

reduces to the following:

a = ( 1 - (l/nc) I x (3.1Z)

Equations (3.10) and (3.11) both contain two quantities, Y and 0,

which still need to be defined. Y is defined in terms of 0 and an
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additional new term B uhile D simply contains the new term B B

is defined in terms of the sample size, n, and the specified shape

parameter, c. Therefore, by computing the B terms, both D and Y can
1

be determined. With 0 and Y known, one can then calculate the BLU

estimators of ocation and scale. The expressions for Y, 0 and B arei

as follows:

n-i

Y = (c+1) B•x() + (c-1)B x (n) - (x (3.13): )n (1) )

n-i

O (c+I) __ B + (c-l)B(n) (3.14)

FT(n-i+l) T(n+l-Z/c)

:- !B : i = l,Z, . ,n (3.15)
B i P(n-i+1-Z/c) T(n+l)

Equations (3.10) to (3.15) are the Kulldorff and Vannman equations

(20:ZI9-ZZ5).

To obtain the BLU estimators, we must calculate all of the B.1

values for i = 1, Z, , n . Eq (3.15) shows that B. contains
1

four gamma functions which would require considerable computational

time; however, the expression can be simplified to recduce the

computational load.

Banks and Carson indicate that "the gamma function can be thought

of as a generalization of the factorial notion which applies to all

positive numbers, not just integers" (1:144). They show that for any

positive real number, p, the gamma function of p is as follows:
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F (p) =(p-i1) F(p-i1) (3.16)

Since 1(1) 1 we see that if p is an integer than Eq (3.16)

reduices to (1`144)z

(p) =(P-1) (3.17)

*Eq (3.16) and Eq (3.17) will be used to simplify the B Iterm to a more

gamma functions of integer values; therefore, Eq (3.17) can be used to

i i

used oanagal t opttoa omhe remanin gamma function in the nmrtrt siti h

reduertior nd p helst Sml fuication of the firtnto B.aterm (30)y

will reveal a pattern which will simplify the evaluation process:

F n-1+1) T(n+1-2/c)

6 =n

1 (n-i+i-z/c) T n+1)

-Fn) F(n+I-Z/c)

=T Tn-Z/c) I (n+1)

(n-i)I (n-2/c) -F(n-Z/c)

n (n-fl)!T n/

(n - Z/c) / n I - Z/(cn) (3.18)

34



Solving for BZ in a similar manner yields the following:

VTn-Z+I) V(n+l-Z/c)

BZ V-(n-Z+l-Z/c) F-(n+1)

T-(n-1) T-(n+l-Z/c)

V-(n-l-Z/c) F(n+1)

(n-Z)! (n-2/c) F(n-2/c)

'," n! 1F (n-l-Z/c)

"(n-Z)! (n-Z/c) (n-l-Z/c) T(n-l-Z/c)

n (n-i) (n-Z)I V(n-l-Z/c)

(n -Z/c) (n 1 - Z/c)

"n (n - 1)

I= [ - Z/(cn) I I I - Z/c(n-1) 1 (3.19)

Equations (3.18) and (3.191 reveal the following pattern for the B n

B = [1 - Z/cn] [1 - Z/c(n-1)] . . . [1 Z/c(l)] (3.Z@)
n

The following notation will allow even further simplification of the B

value computations:
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Let tI = Z/c(r) , t 2 = 2/c(n-l) , , tn = Z/c(I)

Let u = I - tI, u 2 = I- tz , = I - t n

Then BI = u BI , UlU B n

And in general, the computational form is as follows:

i

B. 1 (3.21)

j=l

where u. = 1 - t, and t. Z/c(n-j+l) for j = 1, Z, . . , i3 3 3

(30). Equipped with these relations, we can now write the

following recursive relationship which will allow simpler calculations

"as recommended by Vannman (36:705):

B. = 11 - 2/c(n-i+l)] B i 1,Z,... ,n (3.ZZ)

With these relationships available, the programming of these

calculations will be much simpler.

BLUEs for Shaoe Eoual to or Less Than 2. Vannman indicates

that the variance of the Pareto distribution does not exist when the

shape parameter, c, is equal to or less than Z; therefore, the above

formulas for BLU estimators of location and scale do not apply. He

further states, however, that if only the first k order statistics are

used in the estimator, where 2 ( k ( (n+l - Z/c) , then the variance

of the estimator does exist, with the added condition that the shape

parameter satisfies the following relationship: Z/n ( c ( Z . He

* indicates that the most efficient estimator is obtained by basing the

estimator on the first k order statistics where k = n - [Z/c]. In

"this equation the bracketed fraction implies that only the integer
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portion of the fraction is used in the calculation (36:705-707). The

formulas for the location and scale parameters based on the first k

order statistics are as follows (36:707):

a = x - b /(nc-I) (3.23)

k (1) k

and

k-i

b = (i/Uk) k (c+I) B. X(

+ [ (n-k+l)c - I ] B k (k)Xk)

-[ (nc-l)/(nc) ] (nc- 2 - Uk) x(l) ( (3.24)

where

(nc-Z) (nc-c-Z) - nc[ (n-k)c - 2B

Sk (nc-I) (c+Z) (3.25)

Again, Equations (3.Z3) and (3.24) can only be used where k represents

the first k order statistics and where k ( n + I - 2/c . To obtain

the most efficient BLU esti,.;ator, Vannman indicates that k should

additionally staisfy the following, k = n - [Z/c] , He further states

that in the case where Z/c is already an integer value, then eq (3.24)

simplifies to the following (36:707),

n-21c
(c+l) (c+Z) (nc-i)

b n ( - B x - [(nc-Z)/(c+Z)] x(1)
(nc-Z) (nc-c-Z) i (3.Z6)

Eq (3.Z6) can then be entered into Eq (3.23) to obtain the BLU estimator

for location. However, to use eq (3.Z6), the simplified version of the

AL- BLU estimator of the scale parameter, four conditions must exist:
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1) The shape parameter, c, must be specified

,) Z/n ( c ( 2

3) 2/c is an integer

4) Z ( k = n - Z/c

Finally, Vannman notes two simplified expressions for B. when1

the shape parameter equals I or Z. He indicates that if c = 1

then B. = (I - i/n) I I - (i-l)/n 1. If c = Z , then B. = 1 - i/n
1 1

(36:705). The computer program verification and validation phase

"of this research revealed that Vannman's simplified expression for B

when c = I was incorrect in the published reference. By setting

c = I and simplifying Eq (3.15), the error in Vannman's published

formula was found. To generate correct B values with c - I

Vannman's bracketed term [ I - (i-l)/n I must be changed to

I - i/(n-1) ]. These simplified expressions will be valuable in the

computer programming phase of this study, since B values must be

calculated to determine the BLU estimates.

Minimum Distance Estimator. The general computational forms of

the three distance measures used in this study are presented in Chapter

II and are reflected in equations (2.7), (Z.9) and (Z.10). To apply

these measures using a Pareto distribution, we simply substitute our

hypothesized Pareto distribution function, P , for the z. value
1 1

currently shown in these equations, where the starting point for the

estimates of location and scale will be the BLU estimates. This

"hypothesized Pareto cdf can be written as follows:

r.¢

Pi = F(x )a,b,c) = I - 1 + (x - a)/blc (3.Z7)
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" .•The minimization routine, ZXMIN, from the the International Mathematical

Statistics Library (IMSL) will then alter the values of location and

scale to obtain the minimum distance measure values. These altered

estimates for location and scale then become the minimum distance

estimates for that particular distance measure. The procedural details

are covered in more depth in the following chapter.
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IV. Monte Carlo Analysis

This chapter will describe the specific analysis tool used in this

study to compare the best linear unbiased and the minimum distance

estimation techniques. The tool is called Monte Carlo analysis.

Following a general discussion of the Monte Carlo method, the specific

application of the method in this study will be described. This

application description will present the three step process of Monte

Carlo analysis along with the detailed procedures involved within each

step.

MONTE CARLO METHOD

The Monte Carlo method, or the method of statistical trials (6:1),

falls within the realm of experimental mathematics. Hammersley and

Handscomb indicate that the essential difference between theoretical and

experimental mathematicians "is that theoreticians deduce conclusions

from postulates, whereas experimentalists infer conclusions from

observations" (13:1). Monte Carlo analysis is a member of the

experimental mathematics branch since it deals with mathematical

experiments on random numbers (13:2). A further explancLion of the

Monte Carlo method is provided by Schreider:

The Monte Carlo method (or the method of statistical
trials) consists of solving various problems of
computational mathematics by means of construction
of some random process for each such problem, with
the parameters of the process equal to the required
quantities of the problem. These quantities are then
determined approximately by means oa observations of
the random process and the computation of its statistical
characteristics, which are approximately equal to the
required parameters (6:1].
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"'. " This description of the Monte Carlo method reflects how well suited the

method is for this particular study, since the description mirrors the

process used to compare the two estimation techniques.

MONTE CARLO STEPS AND PROCEDURES

This study uses a three step Monte Carlo process to compare best

linear unbiased estimation with minimum distance estimation (using three

distinct distance measures) as applied to the Pareto distribution.

First, one generates random variates from a specified Pareto

distribution (i.e., a Pareto distribution with known parameters).

Second, the two estimation techniques are used to obtain parameter

estimates based on the random sample data from the first step. Third,

the resulting estimates are compared to determine which estimation

technique provided ihe better parameter estimates (4:27).

Step 1: Data Generation. Using the Monte Carlo technique, we

generate our own random data using the random number generator of the

VAX 11/785 (VMS) computer system located at the Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio. A random number

generator generates random numbers uniformily distributed on [0,1]

(1:293). Parr stated that there were four items required to perform a

minimum distance estimation: a set of data, a parametric model, a

distance measure, and a minimization routine (26:1207-1208). The data

generation step supplies the first two items by generating the data

based on a specified parametric model, the Pareto distribution.

In the first step, the researcher generates the ranoom sample data

needed to create the controlled environment, using different parameter

"values for each data set. To evaluate the effect of sample size on the
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estimators and ensure val:dzty, sample sizes (n) of 6, 9, 12, 15, and 18

are used. Additionally, shape parameters (C) of 1.0, 2.0, 3.0, and 4.0

are Used with the location parameter (a) set to I and the scale

parameter (b) set to I for each sample size resulting in 20 t-3tal data

sets. The random sample data required for the study are random variates

from a specified Pareto distribution. Previous thesis students had used

distributions for which computer programs were already available to

generate random variates using subroutines from the International

Mathematical Statistics Library (IMSL) (4:27; 18:43). However, IMSL

does not contain a similar subroutine for the Pareto distribution.

Therefore, the random variate relationship was derived using the inverse

transform technique (1:294-295) on the general three parameter Pareto

distribution function shown in Eq (3.8) with location parameter of I and

scale parameter of 1. The derivation of the Pareto random variate

relationship begins by substituting a-l and b=1 into Eq (3.8) which

yields the following:

F(x) I - (I/x)c (4.1)

Letting R be a random number between 0 and I and letting X be the random
variate, we have:

R 1 - (I/X)c (4.Z)

Solving for X yields the Pareto random variate relationship:

X = (/R)/c (4.3)

For each of the 20 data sets, 1000 samples are generated where each
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I:
data set is characterized by a unique sample size (n = 6, 9, 12, IS, or

18) and shape parameter (c - 1.0, 2.0, 3.0, or 4.0) with location

parameter and scale parameter set equal to 1. Therefore, a total of

20000 random sample sets are generated, since 20 separate data sets are

required to reflect all the combinations of sample sizes and shapeI- parameters. Previous studies also used 1000 samples to evaluate the

estimation techniques (4:28; 18:43). A computer subroutine, PARVAR, was

written to generate the 20000 random sample sets from the three

parameter Pareto distribution. The IMSL subroutine VSRTA was used on

each sample set of size n to arrange the random variates from smallest

to largest. The output was then used iy each of the estimation

technique subroutines.

Ste' 2: Estimate Computation. The second step of the Monte Carlo

process is to use both of the estimation techniques, best linear

unbiased and minimum distance estimation, to compute estimates based on

the random sample data sets. We first present the procedures used for

finding the best linear unbiased estimates. This presentation is

followed by the minimum distance estimation procedures.

Using each of the data sets along with the best linear unbiased

estimators for the location and scale parameters of the Pareto

distribution function for each data set, one obtains 1000 best linear

unbiased estimates for the parameters of each particular Pareto

distribution sampled. The computer subroutines written to perform this

task were titled BLCGT2 and BLCLE2. These subroutines were eventually

run against all 20 data groups.

The minimum distance estimation process develops six minimum

distance estimators using the 'BLUE' estimates of location and scale
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' ,- for each sample of size n as the starting values for the hypothesized

distribution function, F(x ;a,b,c), uhich in our computational notation

is equal to z. The IMSL minimization subroutine, ZXMIN, then

minimizes the computational form of each distance measure in turn. For

instance, by varying the value of the location parameter while holding

the scale equal to the BLUE for scale, ZXMIN finds the value of the

location parameter which minimizes the distance between the hypothesized

distribution and the empirical distribution function for each sample of

size n. This new value for the location parameter is the single

parameter minimum distance estimate of the location parameter.

Alternatively, by holding the location parameter equal to the BLUE for

location, ZXMIN uses the same procedures to obtain a single parameter

minimum distance estimate for the scale parameter. Finally, ZXMIN finds

what we call a double parameter minimum distance estimate by varying

both the location and the scale parameters in the same minimization

calculation. The result of a double parameter minimum distance estimate

run is a simultaneous estimate of both location and scale. The two

single parameter minimization techniques (i.e. one for location and one

for scale) along with the double parameter minimization technique are

applied to each of the three distance measures, resulting in IZ minimum

distance estimates for each data set generated. The computer

subroutines written to perform these tasks are KSMD, KSAMD, and KSBMD

for the Kolmogorov distance measure. For the Cramer-von Mises distance

measure, the subroutines CVMO, CVAMO, and CVBMO were written. Finally,

for the Anderson-Darling distance measure, the subroutines written art.

entitled ADMO, AOBMD, ADABMD. The source code for these subroutines is

"located in Appendix B. Each of these subroutines is run against all 20
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data groups.

Step 3: Estimate Comparison. The third and final step in the

Monte Carlo analysis is estimate comparison. In this step, the mean

K, square error (MSE) approach is used to evaluate which estimation

technique provides more accurate parameter estimates (4:31).

Many statisticians support the use of MSE as a good evaluation

for comparing estimators. Mendenhall and Scheaffer state that

MSE is the expected value of (8 - e) . They further indicate that the

mean square error can be written as the suM.-ation of the variance and

the square of the bias of an estimator (Z4:Z67). Since we seek

unbiased and relatively efficient estimators, small MSE values should

provide a good indication of estimators possessing these two desirable

properties and should therefore provide a good estimator comparison

tool. Mendenhall further describes a method for evaluating an estimator

which parallels the method used in this study:

Thus the goodness of a particular estimator could be
evaluated by testing it by repeatedly sampling a very
large number of times from a population where the
parameters were known and obtaining a distribution of
estimates about the true value of the parameter. This

distribution of estimates would be referred to as the
'distribution of the estimator' Those estimators
possessing distributions that grouped most closely about
the parameter would be regarded as 'best' . Hence,
the relative 'goodness' of estimators may be evaluated by
comparing their biases and their variances [Z3:14-15J.

Since the MSE is a function of both the variance and the bias, an MSE

comparison should reflect the goodness of the estimators considered, as

suggested by Mendenhall. However, Mood and Graybill warn that "except

in trivial cases, there is no estimator whose mean-squared error is a

minimum for all values of 8" (Z5:167). That is, for a given e value,

estimator A may produce the smallest MSE, while for another value of

"the parameter, estimator B may provide the smallest MSE. However, Mood
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and Graybill do coicede that the MSE does provide a usefol guide for

estimator comparisons in fact, they do end up using the MSE as their

guide in searching for minimum risk estimators. Finally, Liebelt

provides tuo reasons why minimizing the average mean square error is a

credible criteria for evaluating good estimators:

First, if the mean square error is zero or near zero
then the dispersion of the estimate from the true value
is also zero or near zero. Secondly, the choice of
minimizing the average mean square error is an easy
mathematical procedure, whereas other choices often
lead to insurmountable analytical difficulty [ZI:1371.

Therefors, many authors support the use of comparative mean square

errors as a valid technique for evaluating the relative worth of

estimators, where the estimator with the smallest MSE is considered the

'best' estimator for a given set of parameter values.

The term mean square error is very descriptive of the procedures

used durin'7 the evaluation. The 'error' from each of the 1000 samples of

size n is found by subtracting the estimated parameter from the true

population parameter. This error term is then squared, giving the

square error.' Finally, the mean of the 1000 'square error' terms is

found by summing these terms and dividing by 1000, tnereby producing a

'mean square error' (4:32). The estimator providing the smallest MSE,

therefore, is the best estimation technique to use. The formula for

calculating the MSE is as follows.

2MSE(B) = L ( ) ]/N
.i l i (4.4)

"where 6 is the true value of the parameter, 8 is the ith estimate,

and N is the number of times the estimation is performed--in this
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analysis, N = 1000 (4:32). In this case, the parameters being

evaluated are the location and scale parameters. Of course, the

V, computer was used to perform the MSE calculations because of the large

number o• calculations involved. The MSE calculations are embedded in

the main program, BLUMD, thereby eliminating the need to store large

numbe-s of variate and estimate values. The MSE calculations result in

seven eitimation error indicators for the location parameter and seven

estimation error indicators for the scale parameter for every specified

Pareto distribution considered. The seven estimation error indicators

for each parameter correspond to the seven estimation techniques used:

the best linear unbiased estimator and the six minimum distance

estimators. The estimation technique which reflects the smallest MSE is

considered the best parameter estimation t': 'nique for that specified

Pareto distribution.

The subroutines described above in the three step Monte Carlo

analysis were mergel into a computer program (BLUMO) which output the

MSE values for the estimation techniques being compared. The source

code is found in Appendix B. The logical steps or pseudocode for the

program is listed in Figure 1.

Each of the subroutines in BLUMD were validated and verified

individually by comparison with sample hand calculations. Additionally,

the subroutines were again validated and verified as they were added to

the parent program. It was this validation and verification procedure

which first indicated there were possible problems with Vannman's

published B value formula which supported the generation of the best

linear unbiased estimates for c1l. Chapter 3 identifies the published

version of the B value formula and the correction required.



Steps in BLU vs MD Estimate Comparison

1. Generate a sample set of n random variates +rom a Pareto
distribution with location and scale equal to I and shape equal to
C.

2. Order sample from smallest to largest.

3. Calculate BLU estimates for location and scale based on sample
size n.

4. Calcmlate the Kolmogorov minimum distance estimates of
location and scale based on the sample.

5. Calculate the Cramer-von Mises minimum distance estimates of
location and scale based on the sample.

6. Calculate the Anderson-Darling minimum distance estimates of
location and scale based on the sample.

7. Find the error from the true value of I for each estimate and
square this error. Save a running sum of the squared error terms

for each es.imate.

8. Repeat steps 1-7 1000 times for a given n.

9. Divide all eight squared error totals by 1000 to give the
MSE's.

10. Output the 14 MSE's for the given n and c values.

11. Repeat steps 1-10 using a different sample size, n, but the

same c, until all values of n have been used.

12. Repeat steps 1-11 using a new shape value, c, until all
values of c have been used.

Figure 1. Pseudocode for Program BLUMD
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V. _______, A and Conclusions

Figure 1 in Chapter IV. described the pseudocode of the computer

program used to generate each Pareto random variate sample set,

calculate the best linear unbiased and the six new minimum distance

estimates for each parameter based on each sample set, and finally

determine the mean square error for each estimate. This chapter

presents the results of the computer program runs along with an analysis

of these results. Appendix A contains the results of the study in table

format, where a separate table of Mean Square Error values Is presented

for each unique shape parameter--sample size combination investigated.

Since there were 20 possible combinations of shapes and sample sizes,

"Appendix A contains 20 separate tables. Finally, this chapter presents

the conclusions drawn from the analysis of these results.

RESULTS

Appendix A contains the tables of mean square errors (MSEs) for

each estimation technique used in the research effort, given a

particular shape parameter and sample size. Since MSE is the evaluation

tool used to determine which estimation technique was best, these tables

were used to make the estimator comparisons. The estimator with the

smallest MSE value is considered the best estimator of those

investigated.
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TABLE II

Mean square error for c = I and n - 9

iiiHLOCATION (a) HSCALE (b)

I I

! ESTIMATION 1 ESTIMATION 1
1- TECHNIQUE MSE 11 TECHNIQUE MSE Ill

II II

! BLUE 1 2.146262SE-02 H BLUE 0.4062698 H
ADMDI 2.3038462E-02 11 CVMDI 1 0.5638790 I1
CVMD1 2.467813SE-02 I ADMOI 0.5760345 :
KSMDI 4.0461082E-02 I KSMDI 1 0.5824831 i
CVMD2 1 4.2301375E-02 I KSMD2 1 0.6407889 i
KSMO2 1 4.3836664E-02 11 CVM02 1 0.668S479

H ADM02 1 6.16S3644E-02 H ADMO2 0.8271174 I

Figure 2. Sample Table of Mean Square Errors

Figure 2 shows a sample of the table format. Each table contains

two sections. The left section contains the MSEs based upon estimation

of the location parameter while the right section contains the MSEs

based upon estimation of the scale parameter. This format permits an

easy compirison of the BLUE MSE value for each parameter with the MSE

value of each of the minimum distance estimation techniques used. The

smallest MSE value in each table section then reflects the best

estimation technique to use for that parameter, under the stated shape

parameter and sample size conditions. To further simplify the reading

of the tables, the estimation techniques are ordered in each table from

"smallest MSE value to largest. Therefore, the technique which generated

the smallest MSE result is listed first in each column and is also the
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'4. best estimation technique to use for estimating that parameter under the

specified conditions.

Each section of the table contains a list of the estimation

techniques that were applied to the 1000 sample sets of ordered Pareto

random variates. BLUE refers to the best linear unbiased estimation

technique. Each of the other techniques was compared against this

technique to determine which technique provided the better estimate.

ADMD1 refers to the Anderson-Darling minimum distance estimatio,i

technique. Additionally, the I implies that only one parameter was

permitted to vary while the other parameter was held constant (equal to

the BLU estimate). For example, ADMOI under the location parameter

section of the table implies that the location parameter was varied

*• -. while the scale parameter was held equal to the BLU estimate for that

sample size and shape parameter. CVMD1 and KSMDI refer to the

"Cramer-von Mises and the Kolmogorov minimum distance estimation

techniques respectively. Again, the I implies that only one parameter

was allowed to vary in finding the minimum distance value, while the

other parameter was held equal to the BLU estimate. ADM02 again refers

to the use of the Anderson-Darling distance measure in the minimization

process. However, in this case, both the location and scale parameters

were permitted to vary simultaneously in determining the minimum

distance measure. The 2 in the notation indicates that two parameters

were allowed to vary during the minimization process. CVM02 and KSMD2

refer to the use of the Cramer-von Mises and Kolmogorov distance

measures respectively. Again, the 2 in the notation implies that two

parameters (i.e., location and scale) were permitted to vary during the
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* .•' minimization routine. Therefore, in this report, ADMOI, CVMD1 and KSMDI

are called single parameter minimum distance estimation techniques while

ADMD2, CVMD2 and KSMD2 are called double parameter minimum distance

estimation techniques.

ANALYSIS

Regarding the location parameter, the BLU estimator provided the

smallest MSE values in all cases except the case where the shape

parameter equalled 1 (c = I) and the sample size equalled 6 (n 6 6). In

this case, the single parameter Anderson-Darling minimum distance

estimator (ADMDI) provided the smallest MSE. Based on this analysis,

the results showed that, overall, the best linear unbiased estimator

performed better than any of the minimum distance estimators evaluated.

S* The results of the research regarding estimation of the scale

parameter was even more pronounced. Regardless of the shape parameter

(c = 1, 2, 3 or 4) or sample size (n = 6, 9, 12, 15, or 18) used in this

study, the BLUE provided the smallest MSE in every case and is therefore

ranked as the best of the estimation techniques investigated. None of

the minimum distance estimation techniques provided better MSE values in

any instance. Therefore, investigators should feel comfortable using

the BLUE as an instrument of estimation when the underlying population

distribution is the Pareto.

Additionally, some observation- were made regarding the minimum

distance estimation techniques that were applied in this study and how

they performed against each other. Performance of the minimum distance

estimators on both location and scale were addressed.
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For the location parameter, the single parameter Anderson-Darling

minimum distance estimator (ADMDI) provided the smallest MSE values in

every case among the minimum distance estimators tested. ADMOI was

therefore considered the best minimum distance estimator of location

among those investigated.

One concern this researcher had regarding the minimum distance

estimation technique was whether to let both the location and scale

parameters vary (double parameter estimator) to achieve the minimum

distance measure or to permit only one of the parameters to vary (single

parameter estimator) while holding the other as a constant, equal to the

BLUE for that parameter. For the location parameter, the results show

that the single parameter minimum distance estimator out-performed its

double parameter counterpart in every case except one. When c-l and

n=6 , KSMD2 provided a smaller MSE than did KSMD1. In all other cases,

however, the single parameter minimum distance estimator provided better

results. Therefore, the single parameter estimation technique performed

better than its double parameter counterpart when the Kolmogorov,

Cramer-von Mises, or Anderson-Oarling distance measure was minimized for

location parameter estimation of the Pareto.

For the scale parameter, the inferences drawn required a bit more

scrutiny as there was no single best minimum distance estimator. There

was a shift in performance when a shape parameter c > I was specified.

For c = I , CVMDI was the best overall estimator, since it provided the

smallest MSE in four of the five cases investigated. The exception

"occurred again in the case c-l and n-B , where the KSMD1 estimator

gave the smallest MSE; however-, CVMOI did provide the next smallest MSE.
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Therefore, CVMDI was selected as the best minimum distance estimator for

scale when the shape was specified as c I In the other 15 cases

investigated, KSMD2 provided the smallest MSE values in 12 instances.

The three exceptions were: c-2 and n-6 where KSMD1 was best, c-2

and n=l5 where CVMDI was best, and c-3 and n-15 where ADMDI was

best. Overall, CVMOI performed best for c=l and KSMD2 performed best

for c-2, 3 or 4 among the minimum distance estimators for scale

investigated.

Regarding use of the single parameter versus the double parameter

minimum distance estimation technique for scale, no clear rule can be

stated, although there was a definite trend shown in the results. For

c=l , the single parameter technique clearly dominated since in all but

one case, the single parameter estimator provided smaller MSE values

than the corresponding double parameter estimator. The only exception

"was for c=1 and n=12 where KSMD2 performed better than KSMDI

(perhaps an indication of the improved performance this estimator would

show for larger c values). However, as the shape parameter value

increased from I to 4, the performances of the double parameter

- techniques improved. In fact for c=4 , the double parameter estimation

techniques performed better than their single parameter counterparts in

all but one case: for c=4 and n-18, ADMDl out-performed ADMD2.

Therefore, for c=l , the single parameter minimum distance astimators

performed better overall than their double parameter counterparts. For

c=4 , the reverse was true. For shape values of 2 and 3, the

performance was mixed, but the trend toward improved double parame.er

performance with the increasing value of shape was still evident.
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CONCLUSION

I ,The observations made regarding the minimum distance estimators,

although lengthy, should not overshadow the primary conclusion drawn

from this research. The best linear unbiased estimators provided the

best estimates of both location and scale when compared with any of the

minimum distance estimators based upon the mean square error criteria.
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VI. Summary and Recommendations

This chapter presents a summary of the research effort, restating

the objective of the study, the methodology used, and the major

conclusions drawn from the experimental results. Further, three

recommendations for further study in this area are presented.

SUMMARY

"The purpose of this research was to compare the minimum distance

estiration technique with the best linear unbiased estimation technique

to determine which estimator provided more accurate estimates of the

underlying location and zcale parameter values for a given three

parameter Pareto distribution with specified shape parameter. The

Kolmogorov, Cramer-von Mises, and Anderson-Darling distance measures

were used to develop the minimum distance estimators. For each of these

distance measures, two minimum distance estimators were developed. The

first minimum distance estimator varied only a single parameter value to

achieve the distance measure minimization. This estimator was called

the single parameter minimum distance estimator. The second minimum

distance estimator allowed both the location and scale parameters to

vary while achieving the minimum distance measure. These estimators

were called the double parameter minimum distance estimators. These

minimum distance estimators were compared against the best linear

unbiased estimators which had been previously developed by Kulldorff and

Vannman for shape greater than 2, and by Vannman for shape equal to or

less than 2. Manual derivation of the B values formula for the special
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case, cl , revealed an error in the published version of the formula,

as explained in Chapter III. of this report.

A Monte Carlo methodology was used to generate the estimates for
each of the estimation techniques investigated. A sample of Pareto

random variates was generated from a completely specified three

parameter Pareto distribution with location and scale equal to one and

the shape parameter iteratively specified as one, two, three, or four.

The estimates of location and scale were then generated based on each of

the estimation techniques. This process was repeated 1000 times for

each combination of shape parameter (c - 1, 2, 3, or 4) and Pareto

random variate sample size (n = 6, 9, 12, 15, or 18). This Monte Carlo

process resulted in 1000 estimates of both location and scale for each

estimation technique used.

The criteria for determining which estimation technique performed

best was based on the resulting mean square error calculation for each

group of 1000 estimates. The estimation technique which yielded the

smallest mean square error was selected as the best performing

estimator.

The results of this research clearly indicated that the best linear

unbiased estimator provided smaller mean square er-or terms than any of

the ,minimum distance estimation techniques investigated. Therefore, the

best linear unbiased estimation technique was ranked as the best

estimation technique among those tested.

Regarding the minimum dietance estimators, a comparison of the

single versus double parameter techniques was made. For estimation of

the location parameter, the single parameter estimation technique
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performed better than the double parameter estimatiow' technique. For

the scale parameLer estimation, the conclusion was not as clear. A

trend was identified as the value of the specified shape parameter

increased from I to 4. For c - I , the single parameter estimators

performed better; however, as the shape parameter increased, the

performance of the double parameter e5timators improved until at c - 4,

the double parameter estimators performed better than their single

parameter counterparts.

RECOMMENDATIONS

Three recommended areas for further study in this research area are

now offered. First, a study similar to this one can be performed, again

based upon a specified three parameter Pareto distribution, but using

minimum distance estimators based on different distance measures.

Examples of such distance measures include the Kulper distance and the

Watson distance referenced by M. A. Stephens (35:731). Second, a study

involving a comparison of a set of minimum distance estimators against

the best linear unbiased estimators based on the more commonly used two

parameter form of the Pareto distribution could prove fruitful. Third,

a researcher could perform a comparison study involving the maximum

likelihood estimator and a set of minimum distance estimators, again

based upon the common two parameter form of the Pareto distribution

function. Any of these areas would provide fertile ground for the

investigative statistical ressarcher.
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Appendix -A

Tablesof Mean Soug Errors

The following notation is used in this appendix:

Term Notat.ion

Best Linear Unbiased Estimator BLUE

Anderson-Darling Minimum Distance Estimator ADMDI
(Only one varying parameter)

"Cramer-von Mises Minimum Distance Estimator CUMDl
(Only one varying parameter)

- Kolmogorov Minimum Distance Estimator KSMD1
(Only one varying parameter)

Anderson-Darling Minimum Distance Estimator ADMD2
(Two varying parameters)

Cramer-von M1ses Minimum Distance Estimator CVMD2
(Two varying parameters)

Kolmogorov Minimum Distance Estimator KSMD2
(Two varying parameters)

Location Parameter a

Scale Parameter b

Shape Parameter c

Sample Size n

Mean Square Error MSE

The Monte Carlo analysis involves 1000 iterations for the
generation of each table. The true value of the location parameter is
one and the true value of the scale parameter is one for all of the
tables.
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TABLE I

Mean square error for c I and n = 6

LOCATION (a) SCALE (b)

ESTIMATION 1 ESTIMATION
TECHNIQUE MSE I TECHNIQUE MSE

ADMDI 6.1960317E-02 H BLUE 1 0.9352127
CvMDI 6.4573184E-02 ! KSM01 1.460597
BLUE 6.7886792E-02 H CVMD1 1.523946
CVMD2 1 9.81669SOE-02 !I ADMDI 1 1.589061
KSMD2 1.192953 E-01 H KSMD2 1.657526
KSMD1 1.2137P4 E-01 H CVMD2 1.667902
ADMD2 4.874095 E-01 ADMDO 1 3.635L43

TABLE II

Mean square error for c I and n = 9

LOCATION (a) SCALE (b)

ESTIMATION 1 ESTIMATION 1
I TECHNIQUE i MSE : TECHNIQUE I MSE

SBLUE 1 2.1462625E-02 H BLUE 1 0.4062696
ADIDO I 2.3038462E-02 I: CVMDI 0.5638790

: CVMDI 1 2.4678135E-02 H ADMDI 1 0.5760345
i KSMDI 1 4.0461082E-02 1 KSMDI 0.5824831
i CVMD2 1 4.2301375E-02 I KSMD2 1 0.6407889

SKSMD2 1 4.3836664E-02 :1 CVMD2 i 0.6685479
1! AOtD2 I 6.1653644E-02 11 AD1O02 0.8771174
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TABLE III

Mean square error for c I I and n - 12

LOCATiON (a) ii SCALE (b)

I ESTIMATION 1 ESTIMATION
TECHNIQUE i MSE 11 TECHNIQUE MSE

BLUE 1 1.0628480E-02 H BLUE i 0.3627600
ADMDI 1 1.1631799E-02 H CVMDI 1 0.4933714
CVMDI 1.3175875E-02 H ADMODI1 0 5042603
CVMO2 1 2.24BS68SE-02 KSMD2 0 5136845

i KSMDI 1 2.3550959E-02 H KSMDI 1 0.5234504
KSMD2 : 2.4744846E-02 !I CVMD2 1 0.5422385
AOMO2 3.29776S2E-02 I ADM02 0.638002S

TABLE IV

Mean square error for c = I and n IS

"ii LOCATION (a) SCALE (b)

1- ESTIMATION 1 ESTIMATION
1 TECHNIQUE MSE 11 TECHNIQUE MSE

BLUE 7.4139438E-03 11 BLUE 0.30S3709
ii OMODI 9.569488SE-03 CVMDI 0.3754165
CVMDI 1 1.1153221E-02 H ADMDI 0.3911322
KSMDI 1.6373332E-02 KSMDI 1 0.4156374
KSMD2 2.4338266E-02 I CVMD2 0.5204881
CVMD2 1 2.5020871E-02 I KSMD2 0.5390435

ii ADMD2 1 2.9120248E-32 :1 ADM02 i 0.6280289

61



TABLE V

Mean square error for c I and n = 18

LOCATION (a) SCALE (b)

ESTIMATION 1 ESTIMATION
11 TECHNIQUE 5 6MSE -0 TECHNIQUE MSE

BLUE 4.3005478E-03 H BLUE 1 0.1737252
ADMDI 5.2362322E-03 CuMOI 0.2037124
CUMDI 8 6.4189113E-03 H KSMDI 0.2041911
ADMD2 8.6196102E-03 H ADMDI 0.2043972
KSMDI 1.0911038E-02 H KSMD2 0.2185375

CVMD2 1 1.1255259E-02 H CVM02 1 0.2299257
KSMD2 1.2906388E-02 H AOMD2 1 0.2362998

TABLE VI

Mean square error 'or c 2 and n = 6

LOCATION (a) SCALE (b)

ESTIMATION 1 ESTIMATION 1
I TECHNIQUE i MSE TECHNIQUE MSE

BLUE 1.1706045E-02 H BLUE 0.5737305
i DMD1 1 .2802768E-02 H KSM11 0.7080300
CVMDI 1.3687569E-02 H CVMD1 0.7609550
KSMOI i 1.5005208E-02 H CVMD2 0.7871752
CVMO2 1 1.7071828E-02 H ADMOI 0.8051341

!I KSMD2 1 2.2394231E-02 I KSMD2 0.9329775
AOM02 1 2.8150991E-02 H ADM02 i 1.161503
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•'-."TABLE VII

Mean square error for c -2 and n 9

LOCATION (a) SCALE (b)

!lESTIMATION 1 1ESTIMATION
11TECHNIQUE MSE 11TECHNIQUE i MSE

:1 BLUE 14.6055736E-03 1! BLUE 1 0.2564761
ADMDI 15.1687085E-03 11 KSMD2 1 0.2969004

ii CVMDl 5 .9630712E-03 !I CVMDI 0.3137060
!l CVM02 16.9629692E-03 1: KSMDI 1 0.3169191
i: KSMDI 6.9843503E-03 11 CVM02 1 0.3197137
i: KSMD2 17.8367852E-03 11 AOMDI 1 0.3233747

AOMO2 18.9378590E-03 11 AOMO2 1 0.4040874

.• TABLE VIII

" Mean square error for c =2 and n =12

SLOCATION (a) i:SCALE (b)

• . ESTIMATION 1 1ESTIMATION
1 TECHNIQUE MSE 11TECHNIQUE MSE

ii BLUE 11.9467097E-03 11 BLUE 1 0.1996142
:1 AOMDI 12.2874754E-0 KSMD2 1 0.2196842

CVMDI 2.9733009E-03 11 ADMDI 0.2351739
i! ADMD2 13.0276354E-03 :1 CVMOI 0.2386533

KSMOI 13.4914461E-03 !I KStiDl 0.2393236
ii CVMD2 13.7764474E-03 11 CVM02 i 0.24093S1
ii KSMD2 14.6899226E-03 AOMD2 i 0.2438605
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L•

TABLE IX

Mean 5quare error for c 2 and n 15

III

LOCATION (a) iiSCALE (b) I

BLU TB IX B
'I ESTIMATION IESTIMATION I

TECHNIQUE I MSE TECHNIQUE MSE

BLUE 1.23630E-03 H LUE 1 0.16228
ADMD1 1 1.4S23189E-03 H1 CvM0I 1 0.1976B05

H C'JMDI 1.954654@E-03 H1 AOMDI 0.1981037 H
AOM02 1 2.OS40049E-03 H1 KSMDI 0.2068403 H
KSMOI 2.317846SE-03 H CVMD2 0.2084063 H
CVMD2 2.6572768E-03 KSMD2 0.2095122
KSM02 13.2B47996E-03 II ADMD2 1 0.2135706

TABLE X

Mean square error for c = 2 and n 18

LOCATION (a) SCALE (b)

ESTIMATION I 11 ESTIMATION I

TECHNIQUE MSE I TECHNIQUE MSE

BLUE 7.7167596E-04 H BLUE 0.1260424
ADMDI 9.3843893E-04 KSMD2 0.14010S4
ADM02 1.3170647E-03 H ADMDI 0.1430691
CVMDI 1.3989438E-03 H CVMDI 0.1444666
KSMDI I.6IS9606E-03 !I CVMD2 1 0.1470691
CVMD2 I 1.8582337E-03 :1 KSMDI 1 0.1481810
KSMD2 I 2.3905281E-03 11 ADMD2 1 0.1504120

64



TABLE XI

Mean square error for c 3 and n = 6

LOCATION (a) i SCALE (b)

ESTIMATION 1 ESTIMATION
I TECHNIQUE MSE I TECHNIQUE MSE

BLUE 4.6162526E-03 H BLUE 0.3430938
ADMDI 4.7417325E-03 KSMD2 0.3799514 H
CVMDI 1 4.9956846E-03 KSMD1 1 0.4261144 H
CVMD2 5.5936114E-03 H CVMD2 1 0.4292807 H
KSMD1 1 5.6171883E-03 :1 CVMOD 0.4521263

i KSMD2 1 6.1545176E-03 H ADMOI 1 0.4634998
H ADMD2 1.7377743E-02 H ADMD2 1 0.7602041 H

TABLE XII

Mean square error for c 3 and n = 9

LOCATION (a) SCALE (b)

ESTIMATION 11 ESTIMATION i
TECHNIQUE MSE 11 TECHNIQUE 1SE

BLUE 2.5504350E-03 H BLUE 0.2173062 H
AMDMl 2.9328801E-03 H KSMD2 1 0.2343150
CVMDI 1 3.2298244E-03 I CVMD2 0.2613097

ii KSMDI 13.4083289E-03 1: CVMOI 0.2633SS1 t

CVMD2 3.4843122E-03 I KSMDI 0.2647687
2 A2M2 3.62043S0E-03 AOMD 0.2666046

KSMD2 3.8682341E-03 11 AOMD2 0.2911893
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"V.

,.., TABLE XIII

tMean square er'ror for c = 3 and n = 12

LOCATION (a) il SCALE (b)

"1 ESTIMATION 1 11 ESTIMATION 1
1! TECHNIQUE MSE I TECHNIQUE i MSE

ill BLUE 1 .1032750E-03 H BLUE 0.146S466
H ADMOl 1 .3244717E-03 H KSMD2 1 0.1634654
"H1 ADMD2 I S484567E-03 H CVM02 0.1717137

CVMDI I 1.6325671E-03 It ADMOl 1 0.1786888
CVMD2 1.8109ISSE-03 H CVMDI 0.1787402

H KcMDI .824S766E-03 H ADMD2 1 0.1813732
KSMD2 1 2.1554409E-03 H KSMOI 1 0.1881933

TABLE XIV

Mean square error for c 3 and n = 15

LOCATION (a) ii SCALE (b)

1 ESTIMATION I ESTIMATION 1
It TECHNIQUE MSE It TECHNIQUE MSE

il BLUE 1 6.1996793E-04 1: BLUE 1 0.1280874
" " ADMDI 1 8.2581321E-04 H ADMOI 0.14S4654
is ADM02 1 1.0506152E-03 11 CvMD1 0.1467468

CVMD1 1 1.0802834E-03 1: KSMD2 0.1484211
71 KSMOI 1 1.27378SOE-03 11 KSMDI I 0.1519526
i CVMD2 I 1.2966762E-03 It CVMD2 1 0.1521726
I: KSMD2 1 1.3728395E-03 It ADM02 i 0.1S80111
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"TABLE XV

Mean square error for c 3 and n - 18

LOCATION (a) ii SCALE (b)

- ESTIMATION 1 ESTIMATION 1
I TECHNIQUE I MSE I TECHNIQUE i MSE

BLUE 1 3.5388739E-04 11 BLUE 0.1050092
ADMOI 1 4.7279926E-04 H KSMD2 0.1183296
ADMO2 S.8612920E-04 H ADMOI 0.1190109
CVMDI 6.739499SE-04 H CVMO1 1 0.121709S

: KSMD1 1 7.9139235E-04 I CVMD2 1 0.1237090
CVMD2 1 8.1001956E-04 H KSMO1 0.1239811
KSMO2 1 1.0424773E-03 H ADMD2 0.12S0392

TABLE XVI

Mean square error for c 4 and n 6

a LOCATION (a) SCALE (b)

ESTIMATION 1 1ESTIMATION
:1TECHNIQUE i MSE 11TECHNIQUE MSE

i: BLUE 12.2004284E-03 1: BLUE 0.2905423
ADMDI 2.3699524E-0 KSMD2 1 0.3169968
cvmDl 2.5671816E-03 :1 CVM02 i 0.3370034
CUMD2 12.6604387E-03 11 KSMBI 1 0.3809848

ii KSMDI 2.7944316E-03 1: CUMDI 0.3836123
il AOMD2 13.0173361E-0 AOM02 0,3902711
ii KSMD2 13.1S44713E-03 :1 ADMDI 0.3999490

Z67

a a?



"TABLE XVII

Mean square error for c 4 and n = 9

LOCATION (a) i SCALE (b)

II ~ii a
I ESTIMATION a I ESTIMATION a

TECHNIQUE MSE 11 TECHNIQUE I MSE

BLUE 8 .8934094E-04 11 BLJE 1 0.1908786

ADMDI 1.1494281E-03 H KSMD2 1 0.2049502
H CVMDO 1.398402SE-03 11 CVMD2 1 0.2244719

ADMD2 1 14030078E-03 1 ADOM2 0.2334024

CVMD2 1 1.48570BOE-03 H AOMOJI 0.2394877
KSMDI I 1.5590133E-03 H CVMDI 1 0.2420758

H KSMD2 1.7792400E-03 KSMOI 1 0.2460075

TABLE XVIII

Mean square error for c - 4 and n = 12

LOCATION (a) SCALE (b)

ESTIMATION a ESTIMATION
STECHNIQUE MSE TECHNIQUE MSE

H BLUE 4.3847732E-04 H1 BLUE 1 .14S4246 H
ADMO1 5 .357SG70E-04 H1 KSM02 0.1606177 H

Hi ADMD2 16.4326968E-04 :1 AOMO2 i .1745982 H
il CVMDI 7.0931221E-04 H CVMO2 0.1752S79

CVMD2 8.0394966E-04 ADMDI 0.1773998
KSMO1 1 8.4389S72E-04 I CVMDI 0.184G511
KSMD2 9.7926683E-04 H KSMDI 1 0.1893843
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aM-, TABLE XIX

Mean square error for c 4 and n IS

I LOCATION (a) SCALE (b)

ESTIMATION a ESTIMATION a

* TECHNIQUE MSE 11 TECHNIQUE i MSE

BLUE 2.8805208E-04 H BLUE 1 0.1210762
mm ADMDI 1 3.7486354E-04 H KSMD2 0.1318542
11 ADMD2 1 4.3274325E-04 I CVMD2 0.1393966
ii CVMDI I S.3938437E-04 ADMOD2 1 0.1417205
am CVM02 1 6.09273BSE-04 H ADMOI i 0.1437690
!l KSMOI 6.2738BB3E-04 H CVMDI 1 0.1477181
:1 KSMD2 7.4160466E-04 H KSMDI 0.157428 m

TABLE XX

Mean square error for c = 4 and n 18

LOCATION (a) ii SCALE (b)

I ESTIMATION 1 I ESTIMATION m

TECHNIQUE MSE 11 TECHNIQUE MSE

BLUE 1.9949843E-04 I BLUE 9.3522320E-02
ii ADMOl 1 2.688SI97E-04 H KSMD2 1 1.0103040E-01
mm ADM02 2.9941079E-04 ADMODI 1.070693SE-01

m CUMDI 4.2770977E-04 :1 ADMD2 1.07719SOE-01
CVMD2 4.5176961E-04 H CVM02 1.0861484E-01

mm KSMDI S.0622342E-04 H CVMDI 1 1.1239370E-01
ii KSMD2 s 5.9582230E-04 11 KSMDI 1 1.13S7192E-01
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:' Apoendix B

Computer Program for Estimator Comparison

The following FORTRAN computer program, BLUMD.FOR, was written to

perform the Monte Carlo analysis and to generate the mean square errors

for eac.i estimation technique investigated. Program documentation is

included within the program as comment statements to inform the reader

of the purpose of each statement or group of statements. Additionall_,

each subroutine is prefaced by extensive documentation to inform the

reader of the purpose of the subroutine, all of the variables used in

the subroutine, the input variables required, the output variables

S* generated, and the major computations performed within the subroutine to

obtain the desired outputs.
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. -c BLUMD (BLU/MINIMUM DISTANCE) MAIN PROGRAM

S.------------------------------------------------------------------
c Purpose: BLUMD calculates the best linear unbiased estimates in
c addition to the six minimum distance estimates
c (based on the Kolmogorov, the Cramer-von Mises, and the
c finderson-Oarling distances) for both the location and
c ecale parameters of the three parameter Pareto
c distribution, where the shape parameter is varied
c between the integer values 1,Z,3 and 4. Sample sizes
c of 6, 9, IZ, 15, and 18 are used. Pareto variates are
c generated for each combination of shape parameter and
c sample size. Finally, BLUMD calculates the mean square
c error for each estimate type to compare which
c estimation technique performs best.
C ------------------------------------------------------------------
c Variables: n = sample size
c c = shape parameter
c nn = sample size symbol (varies from 1-5
c representing each permissable sample size)
c kkk = dummy variable used to convert nn to n by
c using the formula: kkk = 3 + (nn*3)
c dseed = double precision seed for the Pareto variates
c x = array of Pareto variates
c B = array of B values used to calculate the blues
c for shape greater than 2
c BB = array of BB values used to calculate the blues
c for shape less than or equal to 2
c 0 = constant used to calculate the blues for shape
c greater than Z
c Anc = constant used to calculate the blues for shape
c less than or equal to Z
c Bnc = constant used to calculate the blues for shape
c less than or equal to Z
c ablu = blu estimate of location, a
c bblu = blu estimate of scale, b
c aKS = Kolmogorov minimum distance estimate for a
c bKS = Kolmogorov minimum distance estimate for b
c aCVM = Cramer-von Mises min distance estimate for a
c bCVM = Cramer-von Mises min distance estimate for b
c aRD = Anderson-Darling min distance estimate for a
c while holding b = bblu as constant
c bAD = Anderson-Darling min distance estimate for b
c while holding a = ablu as constant
c aZAD = Anderson-Darling min distance estimate for a
c bZAD = Anderson-Darling min distance estimate for b
c alCV = Cramer-von Mises min distance estimate for a
c while holding b = bblu as constant
c blCV Cramer-von Mises min distance estimate for b
c while holding a = ablu as constant
c alKS = Kolmogorov minimum distance estimate for a
c while holding b = bblu as constant
"c bIKS - Kolmogorov minimum distance estimate for b
. while holding a = ablu as constant
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c sse = array of sum of squared errors for eachSc estimation technique where the true value of

c a is 1 and the true value of b is 1.

"c mse = array of mean square errors for each
c estimation technique used
c count = array of counters used to count the number of
c valid estimate values found
c anda = array of calculated A-D distance measures
c when estimating location alone
c esta= array of location estimates used to minimize
c the A-D distance
c icnt= counter for the number of location estimates

c used to minimize the A-D distance
c andb = array of calculated A-D distance measures
c when estimating scale alone
c estb = array of scale estimates used to minimize
c the A-D distance
c icntb = counter for the number of scale estimates
c used to minimize the A-D distance
c andab = array of calculated A-D distance measures
c when estimating a and b simultaneously
c estaa = array of location estimates used to minimize
c the A-D distance
c estbb = array of scale estimates used to minimize
c the A-D distance

Sc icntab = counter for the number of location and scale
c estimates used to minimize the A-0 distance
C-------------------------------------------------------------------

c Inputs: dseed = double precision seed for Pareto variate
c generation
c c shape parameter
c n sample size

c Outputs: mse = array of mean square errors for each
c estimation technique for each parameter under
c investigation (location and scale)
C-------------------------------------------------------------------

c Calculate: mse = sse/number of trials

c Variable Declc':tions
common n,x,c,ablu,bblu,dseed,B,O,Anc,Bnc,BB,aKS,bKS,

I aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
I ,aICV,bICV,alKS,bIKS

integer n,nn,count(4,5,14),c,kkk,icnt,icntb,icntab
real x(18),ablu,bblu,B(18),D,Anc,Bnc,BB(IB),aKS,bKS,

1 aCVM,bCVM,aRD,bAO,sse(4,S,14),mse(4,5,14),aZAD,bZAD

1 ,anda(S0),andb(S00),andab(SOO),esta(SOO),estb(SO0),
I estaa(SOO),estbb(SOO),aiCV,blCV,a1KS,blKS

double precision dseed
call uerset(@,levold)
dseed = 4384GZI9Zl7.d00
print*,'dseed = ',dseed
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do 90 i=1,4
c i

do 80 j =,l18, 3
n

nnl nn +I
do 40 j33=1,14

sse(c,nn,jjj)=0I40 continue
do 70 it =1,1000
if ((it.eq.Z@0) .or. (it.eq.400) .or. (it.eq.600) .or.

(it.eq.800) .or. (it.eq.1000)) then
print*,'c=',c,' ,ii',n,' iteration=,it

end if
call PARVAR

if (c .gt. 2) then
call BCGTZ
call 9LCGTZ
go to 4S

end -il
call BCLE2
call BLCLEZ

45 if (ablu .eq. 0 .and. bblu .eq. 0) then
go to 70'

end if
call KSMD
call CYMMO
call ADMD
call AD6MD
call A02MD
call CYAMO
call CYBMO
call KSAMD
call KSBMD

c Calculate the Sum of Squiared Errors
58 5se(c,nn,I) = sse~c,nn,I) + (ablu - 1)4**

55e(c,nn,Z) = sse(c,nn,Z) + (bblu - **

sse(c,nn,3) = 55e(c,nn,3) + (aKS - **
sse(c,nn,4) = sse(c,nn,4) + QnKS - **
5se(c,nn,S) = sse(c,nn,S) + (aCVM - 1)4*2
5se(c,nn,6) = sse(c,nn,G) + (bCVM - **

sse(c,nn,7) = sse(c,nn,7) + (aAD - 1)4*2
sse(c,nn,B) = sse(c,nn,8) + (bAD - 1)4*2
sse(c,nn,9) = sse(c,nn,9) + (aZAD - *Z
sse(c,nn,10) = sse(c,nn,10) + (bZAD - *2

sse(c,nn,11) =sse(c,nn,11) + (aICY - **
sse(c,nn,12) = sse(c,nn,12) + (bICY - *Z
sse(c,nn,13) = sse(c,nn,13) + (aIKS - *Z
sse(c,nn,14) = sse(c,nn,14) + (bIKS - *Z

if (it .eq. 1000) then
c Calculate the meian square error for each estimate type

do 60 11 =1,14
kkk =3 + (nn*3)

73



_ ;if (court(c,nn,ll) .eq. 0) then
"print*,'count=@ for c=',c,' n=',kkk,'est=',ll
go to 60

"end if
mse(c,nn,lII) = sse(c,-in,ll1)/count( c, nn, 11)

print*, 'mse=', mse(c, nn, 11), ' c=' ,c,' n=' ,kkk,' est=', 11
print*,'count = ',count(c,nn,11)

60 cont i nue

end if
continue

Be continue
90 continue

end
Subroutine PARVAR

C ------------------------------------------------------------------
c PLrpose- For a specified sample size, n, PARVrR
c generates n random variates from a Pareto
c distribution with location and scale parameters
c set equal to one and the shape parameter, c,
c set "o either 1,1,3 or 4.
C-------------------- I-------------------------------------------------------------

c Formula: x = (1/r)**(I/c)
c ---------------------------------

c Variables.
c r = random number
c z = shape parameter
C x = array of r'areto variates

"c n = sample size
c dseed = random number seed
"C-------------------------------------------------------------------
c Inputs: dseed z random number seed
U c = shape parameter
c n = sample size
C--- ---------------------------------------------------------------

c uutputs: x = Frray of Pareto random variates
c ------------ ----------------.------------------- ------------------

c Calculate:
c x(j) = (1/r(j)) ** (1/c)
C -

C ------------------------------------------------------------------

c *** Variahie Declarations
real r(1'3),x(I8),ablu,bblu,B(18' D,.nc,Bnc,BB(18),aKS,bKS,

1 aCVM,bCVM,dAD.;'AD,aZ.,O,bZAD
integer n,c, nn,count(4,5, 14)
common n,x,c, ablu,bblu,dseed,B, ,J,hncBnc,BB,aKS,bKS,

1 aCVM,bCVM,aAD,bAO,nn,coun,,aZAI?,bZAD
double precision dseed
do A j:1,n

c ** Call IMSL random riiber generator subroutine ggtbs
call ggubs(dseed,n,r)

c *4* Use the inverse transform technique for Pareto vat iates

""" x(j)=(ll ( ))**(l /real(c))

10 continue
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a,•

i c. •** Call VSRTA to sort the variates in ascending order
call vsrta(x,n)
return
end
Subroutine BCLEZ

-------------------------------------------------------------------------------
c Purpose: For a given sample size, n, and a specified shape
c ((--I or c=Z); BCLEZ calculates the B values used
c to find the blu estimates of location and scale.
c In 3ddition, it calculates the constants Anc and Bnc
c for the given shape and sample size.

S •C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c Variables: c = shape parameter
c n = sample size
c BB = array of B values (k in number)
c k = number of order statistics used; k=n-[Z/cl
"r nc = product of n and c
c Anc = constant in tý, formula for the blu for scale
c Bnc = constant in the formula for the blu for scale
c-------------------------------------------------------------------
c Inputs: c = shape parameter
c n = sample size
c ------------------------------------------------------------------
c Outputs: BB = array of B values
c Anc = constant in the blue for the scale parameter
c Bnc = constant in the blue for the scale parameter
--------- --------------------------------------------------- -------.-------
c Calculate:
c Anc= (c+l)(c+Z)(nc-1) / (nc-Z)(nc-c-Z)
C
"c Bnc = (nc-Z) / (c+Z)
c
c For c=1 : B(i) (1 I/n) 1 I - i/(n-l) ]

•. c

-------------------------------------------------------------------------------
c *** Variable Declarations:

real nc,x(18),ablu,bblu,B(18),D,Anc,Bnc,BB(IB),aKS,bKS,
I aCVM,bCVM,aAO,bAD,aZAD,bZAD

integer n,k,c,nn,count(4,5,14)
"double precision dseed
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc.BB,aKS,bKS,

I4 1 aCVM,bCVM,aAD,bAD,nn,count,,aZAD,bZAO
k~n-(Z/c)

c *** Calculate the B values w;len c=l
if (c.eq.l) then

do 10 3=1,k
"BB(j)=(l-3/real(n))*'l-j/(real(n)-1))

7- 1@ cont'nue
"go -. 36

end if
c * Calculate the B values when c=Z (i.e., c.ne.I)
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,* .do 20 m=l,k

BB(m)=I-m/real(n)
zo continue
36 nc = n * c
c ** Calculate the constants Anc and Bnc

Anc= ((c+l)*(c+Z)*(nc-l)) / ((nc-Z)*(nc-c-Z))
Bnc- (nc-Z) / (c+Z)
return
end
Subroutine BLLLEZ

C ------------------------------------------------------------------
c Purpose: For a given sample size, n, and shape (c=l or c=Z),
c BLCLEZ calr,.ates the best linear unbiased estimates
c of location a,,d scale for a sample of ordered Pareto
C variates.
c----------------------------------------------------------------------------------

c Variables: x = array of ordered Pareto variates
c c = shape parameter
c n = sample size
c BB = ar-ay of B values used to calculate the blues
c nc = product of n and c
c k = number of order statistics used; k = n - (Z/cl
c Anc = constant used to calculate the blue for scale

* c Bnc = constant used to calculate the blue for sca'.e
c Bxsum = sum of [B(i) * x(i)] terms for i = 1,2,. k
c ablu = blu estimate of the location parameter, a
c bblu = blu estimate of the scale parameter, b I
"c count = array of counters used to count the number of
c valid estimate values found
c-------------------------------------------------------------------
c Inputs: x = array of ordered Pareto variates
c c = shape parameter
c n = sample size
c BB = array of B values used to calculate the blues
c Anc = constant used to calculate the blue for scale
c Bnc = constant used to calculate the blue for scale
C-------------------------------------------------------------------
c Outputs: ablu = blu estimate of the location parameter, a
c bbiu = blu estimate of the scale parameter, b
S- ------------------------------------------------------------------
c Calculata:
c b (Anc) B(l)x(1) ' B(Z)x(Z) + + B(k)x(k)
c - (Bnc)x(l) I
c
c a =x(l) - [ bi(nc-i) ]

c V Yariable Declarat:.ns:
real x(.1),ablu,bblu,Bxsum,nc,8(l8),D,Anc,Bnc,BB(18),

I aKS,bKS,aCVM,bCVM,aAD,bAD,aZAD,bZRD
integer n,k,c,nn,count(4,5,14)
double precision dsee'
co,.imon n,x,c,ablu,bblL, .ieed,B,D,Rnc,Bnc,BB,aKS,bKS,
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I aLVM,bCVM,arD,bAD,nn,count,aZAD,bZAD
"Bxsum=0
k=n-(Z/c)

.'. c *** Sum the products of B(i) and x(i) for i =I,Z,...k
do 10 j=t,k

Bxsum=Bxsum+BB( j )*x( j)
10 continuue

ncr=n*c
c *** Calculate the blue for scale, then for location

bblu=Anc*(Bxsum - Bnc*x(1))
ablu=x( )-bblu/( nc-I)

c *** Increment counter for valid blues
if (bblu .gt. 0) then

"count(c,nn,l) = count(c,nn,l) + I
count(c,nn,Z) = count(c,nn,Z) + 1

else
print*,'bblu=',bblu,'ablu=',ablu,' negativity'
ablu = 0

bblu = 0
end if

return
end
Subroutine BCGTZ

S- ------------------------------------------------------------------
c Purpose: For a given sample size, n, and a specified shape,
c cOZ; BCGTZ calculates the B and D values used to
c find the blu estimates of location and scale.
c-------------------------------------------------------------------
c Variables: c = shape parameter
c n = sample size
c B = array of B values (n in size)
c D = D value
c bsum = sum of B values for i=1 . (n-I)
C -------------------------------------------------------------------
c Inputs: c = shape parameter
c n = sample size
C-------------------------------------------------------------------
c Outputs: B = array of B values
c D = D value
C-------------------------------------------------------------------
c Calculate:
c B(i) = [1 - Z/c(n-i+l)] * B(1-1)
c
c D = (c+l)[B(l) + B(Z) + ... + B(n-1)] + (c-1)B(n)
c
c ------------------------------------------------------------------
c *** Variable Declarations:

real bsum,x(18),ablu,bblu,B(18),D,Anc,Bnc,BB(18),aKS,b S,
I aCVM,bCVM,aAD,bAD,aZAD,bZAD

integer n,c,nn,count(4,5, 14)
- double precision dseed

"common n,x,c,ablu,bblu,ds eed,B,D,Anc,Bnc,BB,aKS,bKS,
"I aCVM,hCVM,aAD,bAD,nncount,aZAD,bZAD

"77



c * Calculate the first B value
B(l)=(1-(2/(c*real(n))))

c * Calculate the second thru the nth B values

do 10 j=Z,n
B(j )=B( j-l )*( l-( Z/(real(c)*(n-3+l))))

10 continue
::~bsu m= 0

c Sum the 'first' to the 'nth minus one' B values
do ZO k=l,(n-1)

bsum~bsum+B( k)
zo continue
c *** Calculate the D value

0 = (c+l) * bsum + (c-1) * B(n)
return
end

Subroutine BLCGTZ
c-------------------------------------------------------------------
c Purpose: For a given sample size, n, and a specified shape,

. c c>Z, BLCGTZ calculates the best linear unbiased
c estimates of location and scale.

----------------- --------------------------------------------------------------
c Variables: x = array of ordered Pareto variates
c c = shape parameter
c n = sample size
c B = array of B values used to calcJlate the blues
c D = D value used to calculate the blues
c Y = Y value used to calculate the blues
c ablu = blu for location parameter, a
c bblu = blu for scale parameter, b
c Bxsum = sum of 1B(1) * x(i)] terms for i =,Z.... ,(n-1)
c nc = product of n and c
c count = array of counters used to count the number of

c valid estimate values found
-------------------------------------------------------------------------------
c Inputs: x = array of ordered Pareto variates
c c = shape parameter

c n = sample size
"c B = array of B values used to calculate blues
c 0 = D value used to calculate the blues
---------------------------------------------------------------- ---------------
c Outputs: ablu = blu estimate for location, a
c bblu blu estimate for scale, b
C ------------------------------------------------------------------
c Calculate:
c Yla (c+l)[ B(l)x(l) + B(Z)x(Z) + ... + B(n-1)x(n-l) I
c + (c-I)[ B(n)x(n) I - Dx(I)
c
c a x(l) - Y/[(nc-1)(nc-Z) - Dnc]

c
c b (nc-I) E x(l) - a I

-- c

-------------------------------------------------------------------------------------------
c *** Variable Declarations:
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real x(18),ablu,bblu,Bxsum,nc,Y,B(18),D,Anc,Bnc,BB(18)
I ,aKS,bKS,aCVM,bCVM,taAD,bAD,aZAD,bZAD

integer n,c,nn,count(4,5,14)
*" double precision dseed

common n, x, c, ablu,bblu,dseed,B,O,AncBnc,BB,aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,eZRD,bZAD

'w ~Bx sum =

c *.. Sum the products of the B(i) and x(i) values to i = n-I
do 10 j1l,(n-1)

Bxsum=Bxsum+B( j )*x( j)
10 continue
c ** Calculate the Y value

Y=( c+l )*Bxsum+( c-i )*B( n)*x( n)-D*x( 1)
nc=n*c

c-*** Calculate the blu estimates for location and scale
ablu=x( 1 )-Y/((nc-i)*(nc-Z)-(nc*D))
bblu=( nc-i )*( x( I )-ablu)

c *** Increment counters for valid blues
if (bblu .gt. 0) then

count(c,nn,l) = count(c,nn,l) + I
count(c,nn,Z) = count(c,nn,Z) + 1

else
print*,'ablu=',ablu,' bblu=',bblu,' negativity'
ablu = 0
bblu = 0

end if
"return
end
Subroutine KSMO

c-------------------------------------------------------------------
c Purpose: KSMD generates the minimum distance estimates of
c location and scale based upon minimizing the
c Kolmogorov distance measure defined in subroutine
c KOIS. This routine uses the blu estimates as the
c starting points for the estimate modifications.
-------------------------------------------------------------------------------
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, W vectors defined in IMSL mar'ual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of Kolmogorov distance at the final
c parameter estimates
c kse = Kolmogorov derived minimum distance estimates
c aKS = Kolmogorov minimum distance location estimate
c bKS = Kolmogorov minimum distance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
C-------------------------------------------------------------------
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c Inputs' NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c kse = initial estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
C ------------------------------------------------------------------
c Outputs: F = minimum value of the function being minimized

c kse = revised estimate values
c aKS = revised MO estimate of location [aKS = kse(l)]
c bKS = revised MD estimate of scale [bKS = kse(Z)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c------------------------------------------------------------------

"c Calculate: no calculations performed in this subroutine
S-------------------------------------------------------------------
c *** Variables Declarationf

common n, x,c, ablu,bblu,dseed,B,D,Rnc,Bnc,BB, aKS,bKS,

I aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD
external kdis
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,cnunt(4,5,14)
real kse(Z),H( 3),G(Z),W(6),F,x(IB),ablu,bblu,aKS,bKS,

I B(18),D,Anc,Bnc,BB( I1),aCVM,bCVM,aAD,bAD,aZAD,bZAD
double precision dseed

c *** Enter the ZXMIN required constants

NPAR = Z
NSIG = 3
MAXFt = 500
IOPT = 0

c *** Initialize the kse values to the blu estimates
kse(l) = ablu
kse(Z) = bblu

c * Call ZXMIN to refine the kse values by minimizing
c the Kolmogorov distance (KST) computed in the
c subroutine KDIS

call ZXMIN(KDIS,NPAR,NSIG,MAXFN,IOPT,kse,H,G,F,W,IER)
c *** Relabel the refined estimates of location and scale

aKS = kse(1)
bKS = kse(Z)

c *** Incremrt the KS counters
count(c,nn,3) = count(c,nn,3) + 1

count(c.nn,4) = count(c,nn,4) + I
return
end
Subrouu.ne KDIS(NPAR,kse,F)

C ------------------------------------------------------------------
c Purpose: KDIS provides the function which is to be minimized
c by ZXMIN for the Kolmogorov distance measure. The
c location and scale parameters are altered to achieve
c this minimization.

c-------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
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c n = sample size
c kse = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
"c c = shape parameter
c zi = array of Pareto cdf points
c DP = positive differences betueen the EDF and cdf
c OM = negative differences between the EDF and cdf
c DPLUS = maximum positive difference
c DMINUS = maximum negative difference
c KST = Maximum of OPLUS and DMINUS
C ------------------------------------------------------------------

c Inputs: NPAR = number of parameters available to alter
c n = sample size
c kse = initial estimates (the blu estimates)
c x = array of ordered Pareto variat5s
c c = shape parameter
c------------------------------------------------------------------
c Outputs' F = value of the function at the final estimates
c kse = revised estimates of location and scale;
c these are the Kolmogorov minimum distance
c estimates
c-------------------------------------------------------------------

c Calculations:
c z(i) 1 - (I + [x(x)-a]/b)**(-c)

c OP(i) = ABSE i/n - z(i) ]
c
c OM(i) = ABS[ z(U) - (i-1)/n I
c
C ------------------------------------------------------------------
c * Variable Declarations:

common n, x, c, ablu,bblu, dseed, B, D, Anc, Bnc, BB, aKS, bKS,
I aCVM,bCVM,aRD,Bad,nn,count,aZAD,bZAD

integer NPAR,n,c,nn,count(4,5,14)
real kse(NPAR),F,x(18),zi(18),DP(IB),DM(18),DPLUS,

I DMINUS,KST,ablu,bblu,B(18),D,Anc,Bnc,BB(IB),aKS,bKS,
1 aCVM,bCVM,aAD,bAD,aZAD,bZAD

double precision dseed
c *** Calculate the Pareto cdf value [zi(j)] at each point
c and the difierences between the EOF step function
c and the cdf points

do 10 j=l,n
zi(j) = l-(Il(l+(x(j)-kse(1))/kse(Z)))**c

DP(j) = ABS(j/real(n) - zi(j))

DM(j) = ABS(zi(j) - (j-1)/real(n))
10 continue
c * Select the maximum of the plus and minus differences

(PLUS = MAX(DP(1),DP(2),DP(3),DP(4),DP(S),DP(6),DP(7)
I ,OP(8),OP(9),DP( I),DP( II),OP( IZ),DP( 13),OP(14)

- I , DP(15),DP(l6),DP(17),DP(18))

DMINUS = MAX(DM(1 ),DM(Z),DM(3),DM(4),DM(5),DM(6),ODM,(7)
1,DM(8),r)M(9),DM( 10),DM(1l),DM(IZ),DM(13),DM(14)
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: &* I ,OM(lS),DM(16),DM(17),OM(18))
c *** Select the maxir•jm Kolmogorov distance measure and
c set F equal to that distance. F becomes the
c function which ZXMIN attempts to minimize by
c altering the values of the location and scale
c parameters

KST = MAX(DPLUS,DMINUS)

F =KST
return
end
Subroutine CVMMD

c ------------------------------------------------------------------
c Purpose: CVMMD generates the minimum distance estimates of
c location and scale based upon minimizing the
c Cramer-von Mises distance measure defined in subroutine
c CVMDIS. This ro'jtine uses the blu estimates as the
c starting points for the estimate modifications.
C ------------------------------------------------------------------

c Variables: NPAR = number of parameters altered by minimizing
c the Cramer-von Mises (CVM) distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, U = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of CVM distance at the final
c parameter estimates
c cvme = CVM derived minimum distance estimates
c aCVM = CVM minimum distance location estimate
c bCVM = CVM minimum distance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
C ------------------------------------------------------------------
c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c cvme = initial estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
c -------------------------------------------------------------------
c Outputs: F = minimum value of the functio!. being minimized
c cvme = revised estimate values
c aCVM = revised MD estimate of location [aCVM=cvrie(1)]
c bCVM = i-evised MD estimate of scale [bCVM=cvme(Z)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c -------------------------------------------------------------------
c Calculate: no calculations performed in this subroutine
c
---------------------------------------------------------------------------
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c *.* Variables Declaration:
common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,BB,aKS,bKS,

I aCVM,bCVM,aRD,bAD,nn,count,aZAD,bZAD
external cvmdi5
integer NPAR,NSIG,MRXFN,IOPT,n,c,nn,count(4,5,14)
real cvme(Z),H(3),G(Z),t(6),F,x(IB),ablu,bblu,aCVM,bCVM

I ,B(18),D,Anc,Bnc,BB(I8),aKS,bKS,aAD,bAD,aZAD,bZAD
double precision dseed

c *** Enter the ZXMIN required constants
NPAR = Z
NSIG = 3
%MAXFN 500
IOPT = 0

c *** Initialize the cvme values to the blu estimates
cvme(1) = ablu
cvme(Z) = bblu

c ** Call ZXMIN to refine the cvme values by minimizing
c the CVM distance (WZ) computed in the
c subroutine CUMDIS

call ZXMIN(CVMDIS,NPAR,NSIG,MAXFN,IOPT,cvme,H,G,F,W,IER)
c *** Relabel the refined estimates of location and scale

aCVM = cvme(1)
bCVM = cvme(Z)

c * Increment the CVM counters
count(c,nn,5) = count(c,nn,5) + 1
count(c,nn,6) = count(c,nn,6) + I
return
end
Subroutine CVMDIS(NPAR,cvme,F)

-----------------------------------------------------------------------------
c Purpose: CVMDIS provides the function which is to be minimized
c by ZXMIN for the Cramer-von Mises distance measure.
c The location and scale parameters are altered to
c achieve this minimization.
-----------------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size
c cvme = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c ACV = the squared quantity in the WZ formula
c SCVM = the sum of the ACV quantities
c WZ = the CVM distance measure
c . . . . . . . . . . . . . . . . . . . . . . . . . .
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c cvme = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
c c = shape parameter
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c Outputs: F = value of the function at the final estimates
c cvme = revised estimates of location and scale;
c these are the CVM minimum distance estimates
C --..................................................................

c Calculations:
c z(i) = I - (1 + [x(i)-a]/b)**(-c)
c

c ACV(i) = E z(i) - (Zi-1)/Zn ]**Z

c

c SCVM = ACV(l) + ACV(Z) + ... + ACV(n)
c
c WZ = SCVM + 1/lZn
c
C . .

------------------------------------------------------------------------------------------------

c * Variable Declarations:
common n, x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS,bKS,

I aCVM,bCVM,aAD,bAD,nn,countaZAD,bZAD
integer NPAR,n,c,nn,count(4,5,14)
real cvme(NPAR),F,x(IB),zi(18),SCVM,ACV(18),WZ

I , ablu,bblu,B( 18),D,Anc,Bnc,BB( 18),aKS,bKS,aCVM,bCVM,
1 aAD,bAD,aZAD,bZAD

double precision dseed
SCVM = 0
do 10 j=l,n

zi•2) = l-(I/(1+(x(j)-cvme(1))/cvme(Z)))**c
ACV(j) (zi(j) - (Z*j-l)/(Z*real(n)))**Z
SCVM = SCVM + ACV(j)

10 continue
WZ = SCVM + (1/(IZ*real(n)))
F WZ
return
end
Subroutine ADMO

c-------------------------------------------------------------------
c Purpose- ADMO generates the minimum distance estimates of
c the location parameter based upon minimizing the
, Anderson-Darling distance measure defined in
c subroutine ADDIS. ADMO uses the blu estimates as the
c starting points for the estimate modifications.
c-------------------------------------------------------------------
c Variables: NPAR = number of parameters altered by minimizing
c the Ande5son-Darling (A-D) distance
c NSIG = number oi significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of A-D distance at the final
o parameter estimates
c ade = A-D derived minimum distance estimate
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c aUD = A-D minimum distance location estimate
c ablu = blu estiMate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
c anda = array of calculated A-0 distance measures
c esta = array of location estimates used to minimize
c the A-D distance measure
c icnt = counter for the number of estimates used
c ------------------------------------------------------------------
"c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c ade = initial estimate for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
C ------------------------------------------------------------------
c Outputs: F = minimum value of the function being minimized
c ade = revised estimate values
c aAD = revised MD estimate of location [aAD = ade(l)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c ------------------------------------------------------------------
c Calculate- no calculations performed in this subroutine
S-----
c *** Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,DAnc,Bnc,BB,aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
1 ,andb,estb,icntb,andab,estaa,estbb,icntab

external addis
"integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt,hh

I ,icnib,icntab
real ade(l),H(1),G(l),W(3),F,x(18),ablu,bblu,aAD,bAD

I ,B(18),D,Anc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,aZRO,bZAD
I ,anda(S00),esta(SOO),ADI,andb(50),estb(SOO),ardab(500)
1 ,estaa(S0O),estbb(SOO)

double precision dseed
c Enter the ZXMIN required constants

NPAR = I
NSIG = 3
MAXFN 500
IOPT = 0

c Initialize the ade value to the blu estimate
ade(1) = ablu

c * Call ZXMIN to refine the ade values by minimizing
c *** the Anderson-Darling distance (AD) computed in
c the subroutine ADOIS

call ZXMIN(ADDIS,NPAR,NSIG,MAXFN,IOPT,ade,H,G,F,W,IER)
aRD ade(1)

c ** Reinitialize the icnt, anda, and esta arrays
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• 25 icnt 0
do 30 1 l,W(Z)

anda(i) = 0
esta(i) = 0

30 continue
c *** Increment AD counter for valid AD estimates

count(c,nn,7) = count(c,nn,7) + I
return
end
Subroutine ADDIS(NPAR,ade,F)

c-------------------------------------------------------------------
c Purpose: ADDIS provides the function which is to be minimized
c by ZXMIN for the Anderson-Darling distance measure.
c The location parameter is altered to achieve the
c minimization.
------------------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c ARA = array of terms to be summed in AD formula
c SAAD = sum of the AAA(i) terms
c AD = Anderson-Darling distance measure
c anda = array of calculated A-D distance measures
c esta array of location estimates used to minimize
c the A-D distance measure
c icnt = counter for the number of estimates used
C ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c ade = initial estimate (the blu estimate)
c x = array of ordered Pareto variates
c c = shape parameter
C------------------------------------------------------------------
c Outputs: F = value of the function at the final estimate
c ade = revised estimate of location; this is the
c Anderson-Darling minimum distance estimate
C ------------------------------------------------------------------
c Calculations:
c z(i) = I - (I + [x',i)-a]/b)**(-c)

c AAA() = (Zi-1) [ in zl1) + ln ( l-z(n+l-i) ) I
c
c SAAD = AAM(l) + AAA(Z) + . + AAA(n)
c
c AD = (-SAAD)/n - n
C

' • C . .. . . . .. .. . . .. . . . . . . . . . . 8.



c *** Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,BBnc,BB,aKS,bKS,

I aCVM,bCVM,aAD,bAD,nn,count,aZAO,bZAD,anda,esta,icnt
"I ,andb,estb,icntb,andab,estaa,estbb,icntab

integer NPAR,n,c,nn,count(4,S,14),icnt,zcntb,icntab
real ade(NPAR),F,x(18),zi(18),AAA(I8),SAAD,AD

1 ,ablu,bblu,B( 18),D,Rnc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,
1 aAD,bAD,aZAD,bZAD,anda(500),esta(S00)
I ,andb(S00),estb(500),ancab($00),estaa(500),estbb(500)

double precision dseed
do 10 j=1,n

c *** Calculate the Pareto cdf point values
zi(j) = 1-(l/(1+(x(j)-ade(1))/bblu))**c

"c *** Test zi(j) and I I - zi(j) ] for negativity
if (zi(j).le.0 .or. zi(j).ge.1) then

go to 30
end if

10 continue
"SARAD = 0

c *** Calculate the Anderson-Darling distance
do 20 m=l,n

AAA(m) = (Z*,m-1) * (log(zi(m)) + log(l-zi(n+l-m)))
SAAD = ShAD + AAA(m)

20 continue
0D = (-I) * (n + SAAD/n)

c *** Save the AD and ade(l) values
icnt = icnt 4 1
anda(icnt) = AD
esta(icnt) = ade(l)

c *** Relabel the A-D distance
F = AD
go to 40

30 ade(1) = esta(icnt-1)
40 return

end
Subroutine ADBMD

C ------------------------------------------------------------------
c Purpose: ADBMD generates the minimum distance estimates of
c the scale parameter based upon minimizing the
c Anderson-Darling distance measure defined in
c subroutine ADBDIS. AOBMD uses the blu estimates as the
c starting points for the estimate modifications.
C ---------- *----------------------------------------------------------
c Variables: NPAR = number of parameters altered by minimizing
c the Anderson-Darling (A-D) distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of A-D distance at the final
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c parameter estimates
c ade = A-D derived minimum distance estimate
c bAD = A-D minimum dis'ance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
c andb = array of calculated A-D distance measures
C estb = array of scale estimates used to minimize
c the A-D distance measure
c icntb = counter for the number of estimates used
c-------------------------------------------------------------------

c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)

c ade = initial estimate for the minimization process
c ablu = blu estimate of location

c bblu = blu estimate of scale
C ------------------------------------------------------------------

c Outputs: F = minimum value of the function being minimized

c ade = revised estimate values
c bAD = revised MD estimate of scale [bAD = ade(l)]
c H, G, W = vectors defined in IMSL manual on ZXMIN

-" c IER = error parameter (see IMSL manual on ZXMIN)

------------------------------------------------------------------------------
c Calculate: no calculations performed in this subroutine

------------------------------------------------------------------------------c *** Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB,aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD, anda,esta, icnt
1 ,andb,estb,icntb,andab,estaa,estbb,icntab

external adbdis
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt

I ,icntb,icntab,hhh
real ade(1),H(l),G(l),W(3),F,x(18),ablu,bblu,aAD,bAD

I ,B(18),D,Anc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,aZAD,bZAD
i ,anda(S00),esta(S00),andb(SOO),estb(SOO),andab(500),
I estaa(S00),estbb(S00),ADZ

double precision dseed
c *'* Enter the ZXMIN required constants

NPAR = I
NSIG = 3
MAXFN 500
IOPT = 0

c * Initialize the ade value to the blu estimate
ade(l) = bblu

c *** Call ZXMIN to refine the ade values by minimizing
c the Anderson-Darling distance (AD) computed in

"c the subroutine ADBDIS
call ZXMIN(ADBDIS,NPAR,NSIG,MAXFN,IOPT,ade,H,G,F,W,IER)
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bPD =ade(l)4 .

c **. Reinitialize the icntb, andb, and estb arrays
Z5 icntb = 0

do 30 1 = l,W(Z)
andb(i) = 0
estb(i) = 0

30 continue
c *** Increment AD counter for valid AD estimates

count(c,nn,8) = count(c,nn,B) + I
return
end
"Subroutine ADBDIS( NPAR, ade, F)

C -------------------------------------------------------------------
c Purpose: ADBDIS provides the function which is to be minimized
c by ZXMIN for the Anderson-Darling distance measure.
c The scale parameter is altered to achieve the
C minimization.
c-------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto t'f points
c ARA = array of terms to be summed in AD formula
c SAAD = sum of the AAA(i) terms

c AD = Anderson-Darling distance measure
"c andb = array of calculated A-D distance measures
c estb = array of scale estimates used to minimize
c the A-D distance measure
c icntb = counter for the number of estimates used

c Inputs: NPAR = number of parameters available to alter
c n = sample size
c ade = initial es'imate (the blu estimate)
c x = array of ordered Pareto variates
c c = shape parameter
C ------------------------------------------------------------------
c Outputs: F = value of the function at the final estimate

c ade = revised estimate of scale; this is the
c Anderson-Oarling minimum distance estimate
c ------------------------------------------------------------------
c Calculations:
c z(i) = 1 - (I + [x(i)-a]/b)**(-c)
c
c AAA(i) (Zi-l) [ In z(i) + In ( 1-z(n+l-i ) I
c
c SAAD = AAA(l) + AAAM(Z) + + AAA(n)

7 c AD = (-SAAD)/n - n
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L
c *** Variable Declarations:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB,aKS,bKS,
I aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
1 ,andb,estbicntb,andab,estaa,estbb,icntab

integer NPAR,n,c,nn,count(4,S,14),icnt,icntb,icntab
real ade(NPAR),F,x(18),zi(lB),AAA(I8),SAAD,AD

I ,ablu,bblu,B(18),DAnc,Bnc,B8(18),aKS,bKS,aCVM,bCVM,
1 aAD,bAD,aZAD,bZAD

1 ,anda(SOO),esta(SOO),andb(500),estb(S08),andab(508),
I estaa(500),estbb(500)

double precision dseed

do 10 j=l,n
c * Calculate the Pareto cdf point values

zi(j) = 1-(l/(l+(x(j)-ablu)/ade(l)))**c
c * Test zi(j) and [ I - zi(j) I for negativity

if (zi(j).le.0 .or. zi(j).ge.l) then
go to 30

end if
10 continue

SAAD = 0

c * Calculate the Anderson-Darling distance
do ZO m=l,n

AAA(m) = (Zfm-I) * (log(zi(m)) + log(l-zi(n+l-m)))
SAAD -SAAD0 + AAA( M)

2 ra coniinue
AD - (-1) * (n t SAADin)

c *** Save the AD and ade(l) values

icntb - icntb T i
andb(icntb) - AD
estb(icntb) - ade(1)

c ** Relabel the A-D distance
r - flu

go to 46
30 ade(i) - esibhicntb-i)
406 return

end
Subroutine ADZMD

c -------------------------------------------------------------------
Purpose- mDZaD generates the minimum distance estimates of

c location and scale simuitaneously, based on minimizing
c the Anderson-Darling distance measure defined in
c subroutine ADZDiS. ANDZD uses the blu estimates as the
c starting points for the estimate modifications.
C ------------------------------------------------------------------

c Variables- NFAR - number of parameters altered by minimizing
c the Anderson-Darling ,A-D) distance
c NSIG - number of significant digits for convergence
c I'MAXFN - maximum number of function evaluations
c lOFT - options selector (see IiSL manual on ZXMIN)
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" "' c H, G, U vectors defined in IiSL manuai on ZXMIN

c iER - error parameter (see iH5L manual on Z7iIN)

c F - value of A-D distance at the final
c parameter estimates

c ade - 0-D derived minimum distance estimate
Sc aZAD - A-D minimum distance location estimate

c bZAD - A-D minimum distance scale estimate

c ablu - blu estimate of location
c bbiu - biu estimate of scale
c count - array of counters used to count the number of
c valid estimate values found
c andab - array of calculated A-D distance measures
c estaa - array of location estimates used to minimize
c the A-D distance measure
c estbb - array of scale estimates used to minimize
c the A-D distance measure

c icntab - counter for the number of estimates used
c------------------------------------------------------------------
c inputs. NPAR - number of parameters altered while minimizing
c NSIG - number of significant digits required
c MAXFN - maximum number of function evaluations
c !OPT - options selector (see IMSL manual on ZXHIN)
c ade initial estimate for the minimization process
c abju - blu estimate of location

c bblu - blu estimate of scale
-----------------------------------------------------------------------------
c Outputs- F minimum value of the function being minimized
c ade - revised estimate values
c aZAD - revised HD estimate of location iaZAD - ade(I)i
c bZAD - revised nD estimate of scale (bZAD - ade(Z)]
c G, W, w - vectors defined in IHSL manual on ZXHIN
c iER - error parameter (see iHSL manual on ZXiIN)
c ------------------------------------------------------------------
c Calculate. no calculations performed in this subroutine

c-------------------------------------------------------------------
• c -- Variables Declaration.

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc, BB, aKS,bKS,
i aCVH,bCVn,auD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
i ,andb,estb,icntb,andab,estaa,estbb,icntab

external adZdis

integer NPAR,NSIG,niAXFN,IuPT,n,c,nn,count(4,5,i4)K ,icnt,icnib,icntab,hhhh
real ade(Z),H( 3),G(Z),wJ(),F,x(iB),abilu,bbiu,aAD,bAD

i , B(iB),D,iinc,iBnc,BB(iB),aKS,bKS,aCVM,bCVM,aZ AD, bZAD
1 ,anda(Sr5ii),esta(B5ira,andb(S 5a),estb(5,36),andab(B5ra),
i estaa(5r5 ),estbb(Sr5),AD3

double precision dseed
c **- Enter the ZXHIN required constants

NPAR = Z
NSIG = 3

L2~ t MAXFN = S5e
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!OFT -r

c *- initiaiize the ade value to ihe blu estimate
ade(i) - ablu

ade(Z) - bblu
c **- Call ZXMIN to refine the ade values by minimizing
c the Anderson-Darling distance (AD) computed in
c the subroutine ADZDIS

call ZXMIN(ADZDIS,NPAR,NSIG,MAXFN,IOPT,ade,H,G,F,U,IER)
aZAD = ade(1)
bZAD = ade(Z)

c ** Reinitialize the icntab, andab, estbb, and estaa arrays
Z5 icntab 6

do 36 i =l,t(Z)
andab(i) =0
estaa(i) -

estbb(i) - 6
30 continue
c * increment AD counter for valid AD estimates

count(c,nn,S) = count(c,nn,9) + I
couni(c,nn,10) count(c,nn,lB) + 1
return
end
Subroutine ADZDIS( NPrR,ade,F)

c-------------------------------------------------------------------
c Purpose- ADZDIS provides the function which is to be minimized
c by ZXMIN for the Anderson-Darling distance measure.
c The location and scale parameters are both altered to
c achieve the minimization.
C-------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size
c ade = estimates of the parameter being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c ARA = array of terms to be summed in AD formula
c SARD = sum of the AAA(1) terms
c AD = Anderson-Oarling distance measure
c andab = array of calculated A-D distance measures
c estaa = array of location estimates used to minimize
c the A-D distance measure
c estbb = array of scale estimates used to minimize
c the A-D distance measure
c icntab = counter for the number of estimates used
c ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c ade = initial estimate (the blu estimate)
c x = array of ordered Pareto variates
c c = shape parameter
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.4,; C
c Outputs: F = value of the function at the final ettimate

c ade = revised estimates of location and scale;
c these are the Anderson-Darling minimum

c distance estimates
C -- - - - - -- - - - -- - - - -- - - - - -- - - - -- - - - - - - -- - - -- - - -- - - - - -- - - - - - - -- - - - -- - -

c Calculations:
c z(i) = I - (1 + [x(i)-a]/b)**(-c)
c
c AAA(i) = (Mi-1) I in z(i) + In ( I-z(n+l-i) ) I
c

C
c SAAD = AAAi(1) + AAA(Z) + .. ARA(n)
c

c AD = (-SAAD)/n - n
C

C---------------------------------------------------------------------------------

c *** Variable Declarations:

common n,x, c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
I , andb,estb,icntb,andab,estaa,estbb,icntab

integer NPAR,n,c,nn,count(4,5,14),icnt,icntb,icntab
real ade(NPAR),F,x(18),zi(18),AAA(18),SAAD,AD

I , ablu,bblu,8( 18),D,Anc,Bnc,BB( 18),aKS,bKS,aCVM,bCVM,
I aAD,bAD,aZAD,bZAD,anda( 50),esta(S00),andb(500),

I estb(SO0),andab(500),estaa(500),estbb(S00)
double precision dseed
do 10 j1l,n

c * Calculate the Pareto cdf point values
zi(j) = 1-(I/(I+(x(j)-ade(l))/ade(Z)))**c

c *** Test zi(j) and I - zi(j) I for negativity

if (zi(j).le.0 .or. zi(j).ge.1) then
go to 30

end if
10 continue

SAAD = 0
c *** Calculate the Anderson-Darling distance

do 20 m=1,n
AAA(m) = (Z*m-1) * (log(zi(m)) + iog(l-zi(n+l-m)))

SARD = SAAD + AAA(m)
70 continue

AD = (-I) * (n + SAAO/n)
c S Save the AD and ade(1) values

icntab = icntab + I
andab(icntab) = AD
estaa(icntab) = ade(1)
estbb(icntab) = ade(Z)

c ** Relabel the A-D distance
F = AD
go to 40

30 ade(1) = estaa(icntab-l)
ade(Z) = estbb(icntab-l)

40 return
end

93



" 'Subroutine CVAMD

C ------------------------------------------------------------------

c Purpose: CVAMD generates the minimum distance estimates of

c the location parameter based upon minimizing the
c Cramcr-von Mises distance measure defined in

c subroutine CVADIS. CVAMD uses the blu estimates as the
c starting points for the estimate modifications.

C ..................................................................

c Variables: NPAR = number of parameters altered by minimizing

c the Cramer-von Mises (CVM) distance
c NSIG = number of significant digits for convergence

c MAXFN r maximum number of function evaluations

c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, U = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)

c F = value of CVM distance at the final
c parameter estimates
c cvme = CVM derived minimum distance estimate
c alCV = CVM minimum distance location estimate

c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
"c valid estimate values found

C ------------------------------------------------------------------

c Inputs- NPAR = number of parameters altered while minimizing
"-c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations

c IOPT = options selector (see IMSL manual on ZXMIN)
c cvme = initial estimate for the minimization process
c ablu = blu estimate of location

c bblu = blu estimate of scale

c Outputs: F = minimum value of the function being minimized
c cvme = revised estimate values
c alCV = revised MD estimate of location [aICV~cvme(l)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c !ER = error parameter (see IMSL manual on ZXMIN)
c-------------------------------------------------------------------

c Calculate no calculations performed in this subroutine
C ------------------------------------------------------------------

c ** Variables Declaration:
common n,x,c,ablu,bblu,dseed,B,O,Anc,Bnc,BB,aKS,bKS,

1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,andaesta,icnt
1 ,andb,estb,icntb,andab,estaa,estbb,icntab

1 ,aICV,bICV,alKS,bIKS
external CVAOIS
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt,hh

I ,icntb,icntab
real cvme(l),H(l),G(l),W(3),F,x(18),ablu,bblu,aAD,bAD

I ,B(18),D,Anc,BncBB(I8),aKS,bKS,aCVM,bCVM,aZ' O,bZAD7 I ,anda(SOO),esta(SOO),ADl,andb(SOO),estb(SOO),andab(500)
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i•.•' ~I ,est aa( 5OO), est bb( $00), alCV, bl CV, al KS, blKS
I double precision dseed

c Enter the ZXIIIN requiired constants
NPAR = 1
NSIG = 3

AMXFN = SOO
IOPT =0

c Initialize the cvme value to the blu estimate
7 cvme(I) ablu

c *.* Call ZXMIN to refine the cvme values by minimizing
c the Cramer-von Mises distance (UZ) computed in
c the subroutine CVADIS

call ZXMIN(CVADIS,NPAR,NSIG,MAXFN,IOPT,cvme,H,G,F,U,IER)
c *** Relabel the refined estimates of location

alCV = cvme(l)
c *** Increment the aICV counter

count(c,nn,ll) = count(c,nn,1l) + I
return
end
Subroutine CVADIS(NPAR,cvme,F)

--------------------------------------------------------------------------------
c Purpose: CVADIS provides the function which is to be minimized
c by ZXMIN for the Cramer-von Mises distance measure.
c The location parameter is altered to
c achieve this minimization.
c ------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size
c cvme = estimates of the parameters being altered
c F = value of the function to be minimized
C x = array of ordered Pareto variates
c c =shape parameter
c zi = array of Pareto cdf points
c ACV = the squared quantity in the IZ formula
c SCVM = the sum of the ACV quantities
c WZ = the CVM distance measure
C ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n =sample size
c cvme = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
c c = shape parameter
C-------------------------------------------------------------------
c Outputs: F = value of the function at the final estimates
c cvme = revised estimates of location and scale;
c these are the CVM minimum distance estimates
--------------------------------------------------------------------------------
c Calculations:
c z(i) = - (I + [x(i)-a]/b)**(-c)

__ c
c ACV(i) [ z(1) (Zi-l)/Zn ]**Z
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c

c SCVM = ACV(l) + ACV(Z) + + ACV(n)
c

c UZ = SCVM f 1/iZn
c
C
C----------------------------------------------------------------------------------

c . Variable Declarations:
common nx,c,ablu.bblu,dseed,B,O,Anc,Bnc,BB,aKS,bKS,

I aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
I ,aICV,bICV,alKS,bIKS

integer NPAR,NSIG,tMAXFN,IOPT,n,c,nn,count(4,S, 14),icnt,hh
, icntb,icntab

real cvme(1),H( I),G( 1 ),W(3),F,x(18),ablu,bblu,aAD,bAD
I ,B( I8),D,Anc,Bnc,BB( I8),aKS,bKS,aCVM,bCVM,aZAD,bZAD
I anda(S5OO), esta(S5OO),ARl, andb(S5OO), estb( 5OO), andab(50i))
I ,estaa( 500), estbb( 50O), alCV, blCV, alKS, bIKS
I ,zi(lg),SCVMACV(18),UZ

double precision dseed
SCVM = 0

do 10 j=1,n
zi(j) = 1-(l/(1+(x(j)-cvme(1))/bblu)).*c
ACV(j) = (zi(j) - (Zmj-l)/(Z*real(n)))'*Z
SCVM = SCVM + ACV(j)

10 continue
WZ = SCVM + (1/(IZ*real(n)))
F = WZ
return
end
Subroutine CVBMD

C .. . -----------------------------------------------------------------

c Purpose' CVBMD generates the minimum distance estimates of
c the scale parameter based upon minimizing the
c Cramer--von Mises distance measure defined in
c subroutine CVBDIS. CVBMD uses the blu estimates as the
c starting points for the estimate modifications.

c ------------------------------------------------------------------

c Variables: NPAR number of parameters altered by minimizing
c the Cramer-von Mises (CVM) distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT options selector (see IMSL manual on ZXMIN)
c H, G, U = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of CVM distance at the final
c parameter estimates
c cvme = CVM derived minimum distance estimate
c blCV = CVM minimum distance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
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c valid estimate values found

c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations

c IOPT = options selector (see IMSL manual on ZXMIN)

c cvme = initial estimate for the minimization process

c ablu = blu estimate of location
c bblu = blu estimate of scale
c------------------------------------------------------------------

c Outputs: F = minimum value of the function being minimized
c cvme = revised estimate values
c bICV = revised MD estimate of scale tblCV=cvme(l)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c--------------------------------------------------
c Calculate: no calculations performed in this subroutine
c --------------------------------------------------
c **. Variables Declaration-

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB,aKS,bKS,
1 aCVM,bCVM,aRD,bAD,nn,count.aZAD,bZAD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab

1 ,aICV,bICV,alKS,blKS
"external CVBDIS
integer NPAR,NSIG,MAXFNIOPT,n,c,nn,count(4,5,14),icnt,hh

I ,icntb,icntab
real cvme(l),H(l),G(I),W(3),F,x(18),ablu,bblu,aRD,bAD

1 ,B(18),D,Anc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,aZ'O,bZAD
1 ,anda(SOO),esta(SO),ADI,andt(SOO),estb(SOO),andab(5SI)
I ,estaa(SOO),eitbb(SOO),alCV,bICV,alKS,bIKS

double precision dseed
c *** Enter the ZXMIN required constants

NPAR = I
NSIG = 3
MAXFN = 500
IOPT = 0

c *- Initialize the cvme value to the blu estimate
cvme(l) = bblu

c .' Call ZXMIN to refine the cvme values by minimizing
c the Cramer-von Mlises distance (WZ) computed in

c the subroutine CVBDIS
call ZXMIN(CVBDIS,NPAR,NSIG,MAXFN,IOPT,cvme,H,G,F,U,IER)

c '** Relabel the refined estimates of scale
blCV = cvme(1)

c ** Increment the bICV counter
count(c,nn,1Z) count(c,nn,IZ) + I

return
end
Subroutine CVBDIS(NPAR,cvme,F)

C---------------------------------------------------
c Purpose: CVBDIS provides the function which is to be minimized
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c by ZXMIN for the Cramer-von Mises distance measure.

c The scale parameter is altered to
c achieve this minimization.
c-------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
"c n = sample size
c cvme = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c ACV = the squared quantity in the WZ formula
c SCVM = the sum of the ACV quantities
c UZ = the CVM distance measure
c ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c cvme = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
c c = shape parameter
C ------------------------------------------------------------------
c Outputs: F = value of the function at the fi.ial estimates
c cvme = revised estimates of scale;
c these are the CVM minimum distance estimates
""- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c Calculations:
c z(1) = I - (I + [x(i)-a]/b)'*(-c)

c
"c ACV(i) = I z(i) - (Zi-1)/Zn ]**Z
c
c SCVM = ACV(1) + ACV(Z) + + ACV(n)
c
c WZ = SCVM + I/lZn
c

------------------------------------------------------------------

"c , Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D, Anc,Bnc,BB,aKS,bKS,

I aCVM,bCVM,aADbAD,nn,count,aZAD,bZfD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
I ,aICV,bICV,alKS,bIKS

integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,5,14),icnt,hh

I ,icntb,icntab
real cvme(1),H(i) , G(l),W(3),F,x(IB),ablu,bblu,aAD,bAD

1 ,8(18),D,Anc,Bnc,BB(I),aKS,bKS,aCVM,bCVM,aZAD,bZAD
I ,anda(SOO),esta(S00),ADl,andb(E00),estb(SOO),andab(S00)
I ,estaa(S00),estbb(SOO),aICV,bICV,alKS,bIKS
I ,zi(18),SCVM,ACV(18),WZ

double precision dseed
SCVM = 0
"do 10 j=l,n

z() = 1-( I/( l+(x( j )-ablu )/cvme( 1)) )**c
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ACV(j) = (zi(j) - (Z*j-l)/(Z*real(n)))**Z
SCVM = SCVM + ACV(j)

continue
UZ SCVU + (I/(1Z*real(n)))
F=WZ
return
end
Subroutine KSAMD

c Purpose: KSAMD generates the minimum distance estimates of
c location based upon minimizing the
c Kolmogorov distance measure defined in subroutine
c KADIS. This routine uses the blu estimates as the
c starting points for the estimate modifications.
------------------------------------------------------------------------
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of Kolmogorov distance at the final
c parameter estimates
c kse = Kolmogorov derived minimum distance estimates
C aIKS = Kolmogorov minimum distance location estimate
c ablu = blu estimate of location
"c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
- ------------------------------------------------------------------
c Inputs: NPAR = number of parameters altered while minimizing
c NSIG = number of significant digits requirej
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c kse = initial estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c Outputs: F = minimum value of the function being minimized
c kse = revised estimate values
c alKS = revised MD estimate of location [alKS = kse(l)]
c H, G, W = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
C ------------------------------------------------------------------

c Calculate: no calculations performed in this subrcwtine
c ------------------------------------------------------------------
c * Variables Declaration:

"common n, x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS,bKS,
I aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
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"•I ,aICV,bICV,alKS,bIKS
external KADIS
integer NPAR,NSIb,MAXFN,IOPT,n,c,nn,count(4,S,14),icnt,hh

i ,lcntb,icntab

real kse(l),H(l),G(l),W(3),F,x(18),ablu,bblu,aAO,bAD
I ,B(IB),D,Anc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,aZAD,bZAD
1 ,anda(SO0),esta(SOO),ROl,andb(SOO),estb(SOO),andab(5S0)
1 ,estaa(SOO),estbb(SOO),a1CV,blCV,alKS,blKS
I ,zI(I8),SCVMACV(18),WZ

double precision dseed

c *** Enter the ZXMIN required constants
NPAR = I
NSIG = 3
MAXFN = 500
IOPT = 0

c *. Initialize the kse values to the blu estimates
kse(l) = ablu

c ** Call ZYMIN to refine the kse values by minimizing
c the Kolmogorov distance (KST) computed in the
c *.* subroutine KADIS

call ZXMIN(KADIS,NPRR,NSIG,MAXFN,IOPT,kse,H,G,F,W,IER)
c **. Relabel the refined estimates of location

alKS = kse(l)
c * Increment the alKS counter

count(c,nn,13) = count(c,nn,13) + I
return
end
Subroutine KADIS(NPAR,kse,F)

C ------------------------------------------------------------------
c Purpose: KADIS provides the function which is to be minimized

c by ZXMIN for the Kolmogorov distance measure. The
c location parameter is altered to achieve
c this minimization.
C ------------------------------------------------------------------

c Variables: NPAR = number of parameters available to alter

c n = sample size
c kse = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points

c OP = positive differences between the EDF and cdf
c DM = negative differences between the EDF and cdf
c OPLUS = maximum positive difference

c DMINUS = maximum negative difference
c KST = Maximum of [PLUS and OMINUS

C ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c kse = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
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"c c = shape parameter

o Outputs: F = value of the function at the final estimates
c kse = revised estimates of location;
c these are the Kolmogorov minirrm distance
"c estimates
C ------------------------------------------------------------------
c Calculations:
c z(i) = 1 - (1 + [x(i)-a]/b)**(-c)
c
c OP(i) ABS[ i/n - z(i) i
c

c DM(i) ABS[ z(i) - (i-l)/n I
" ~C

c-------------------------------------------------------------------
c *e' Variable Declarations:

common n, x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB, aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
1 ,andb,estb, icntb,andab,estaa,estbb,icntab
I ,aICV,blCV,alKS,bIKS

integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,S,14),icnt,hh

1 , icntb,icntab
real kse(1),H(1),G(1),U(3),F,x(18),ablu,bblu,aAD,bRD

I ,B(18),D,Anc,Bnc,BB(1I),aKS,bKS,aCVM,bCVM,aZAD,bZAD
1 ,anda(S0O),esta(50),ADl,andb(G50),estb(S50),andab(50 )
I ,estaa( 50),estLo( 50),aICV,blCV,alKS,blKS
1 ,zi(IS),EJP(18),OM(IB),OPLUSDMINUS,KST

double precision dseed
c *'* Calculate the Pareto cdf value (zi(j)] at each point
c and the differences between the EDF step function
c and the cdf points

do 10 j=l,n
zi(i) = 1-(1/(1+(x(j)-kse(l))/bblu))**c
DP(j) = ABS(j/real(n) - zi(j))
DM(j) = ABS(zi(j) - (j-1)/real(n))

,0 continue
c ** Select the maximum of the plus and minus differences

OPLUS = MAX(DP(1),DP(Z),DP(3),DP(4),DP(S),DP(6),DP(7)
1 ,DP(8),OP(9),IOP(10),DP( 11),DP(1Z),DP(13),DP(14)
I ,DP(IS),OP(16),DP(17),OP(18))

DMINUS MAX(DM(I),DM(Z),DtM(3),DM(4),DM(S),DM(6),DM(7)
I ,DM(8),DM(9),DM(10),DM( 11 ),DM(IZ),DM(13),DtM(14)
1 ,OM(I5),DM(16),OM(17),DM(l8))

c *.. Select the maximum Kolmogorov distance me.asure and
c set F equal to that distance. F becomes the
c function which ZXMIN attempts to minimize by
c altering the values of the location parameter

KST MAX(DPLUS,DMINUS)
F = KST
return
end
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Subroutine KSBMD

c Purpose: KSBMD generates the minimum distance estimates of
c scale based upon minimizing the
c Kolmogorov distance measure defined in subroutine
c KBDIS. This routine uses the blu estimates as the
c starting points for the estimate modifications.
c-------------------------------------------------------------------
c Variables: NPAR = number of parameters altered by minimizing
c the Kolmogorov distance
c NSIG = number of significant digits for convergence
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c H, 6, U = vectors defined in IMSL manual on ZXMIN
c IER = error parameter (see IMSL manual on ZXMIN)
c F = value of Kolmogorov distance at the final
c parameter estimates
c kse = Kolmogorov derived minimum distance estimates
c bWKS = Kolmogorov minimum distance scale estimate
c ablu = blu estimate of location
c bblu = blu estimate of scale
c count = array of counters used to count the number of
c valid estimate values found
c - ------------------------------------------------------------------
c Inputs: NPAR = number of parameters altered uhile minimizing
c NSIG = number of significant digits required
c MAXFN = maximum number of function evaluations
c IOPT = options selector (see IMSL manual on ZXMIN)
c kse = initial estimates for the minimization process
c ablu = blu estimate of location
c bblu = blu estimate of scale
C ------------------------------------------------------------------
c Outputs: F = minimum value of the function being minimized
c kse = revised estimate values
c bWKS = revised MD estimate of scale [blKS = kse(l)]
c H, G, U = vectors defined in IMSL manual on ZXMIN
c IER = error paramete- (see IMSL manual on ZXMIN)
C ------------------------------------------------------------------
c Calculate: no calculations performed in this subroutine
c ------------------------------------------------------------------
c . Variables Declaration:

common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB,aKS,bKS,
1 aCVM,bCVM,aAD,bAD,nn,count,aZAD,bZAD,anda,esta,icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
I ,aICV,bICV,atKS,bIKS

external KBDIS
integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,S,14),icnt,hh

I ,icntb,icntab
real kse(l),H(1),G(1),W(3),F,x(IB),ablu,bblu,aAD,bAD

I ,B(IB),D,Anc,Bnc,BB(Il),aKS,bKS,aCVM,bCVM,aZAD,bZAD
I ,anda(SOO),esta(SOO),ADI,andb(50O),estb(50O),andab(50)
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- I ,estaa(500),estbb(5OO),alCV,bICV,aIKS,bIKS
1I ,zi(18),SCVM,ACV(18),WZ

double precision dseed
c *** Enter the ZXMIN required constants

NPAR = I
NSI6 = 3
MAXFN = 500
IOPT = 0

c *** Initialize the kse values to the blu estimates
kse(1) = bblu

c *.* Call ZXMIN to refine the kse values by minimizing
c the Kolmogorov distance (KST) computed in the
c subroutine KBODIS

call ZXMIN(KBDIS,NPAR,NSIG,MAXFN,IOPT,kse,H,G,F,W, IER)
c *** Relabel the refined estimates of location

bIKS = kse(l)
c **. Increment the bWKS counter

count(c,nn,14) = count(c,nn,14) + 1
return
end
Subroutine KBDIS(NPAR,kse,F)

--------------------------------------------------------------------
c Purpose: KBOIS provides the function which is to be minimized
c by ZXMIN for the Kolmogorov distance measure. The
c scale parameter is altered to achieve
c this minimization.
----------------------------------------------------------------------------
c Variables: NPAR = number of parameters available to alter
c n = sample size

c kse = estimates of the parameters being altered
c F = value of the function to be minimized
c x = array of ordered Pareto variates
c c = shape parameter
c zi = array of Pareto cdf points
c OP = positive differences betueen the EDF and cdf
c DM = negative differences between the EDF and cdf
c OPLUS = maximum positive difference
c DMINUS = maximum negative difference
c KST = Maximum of OPLUS and OMINUS
C ------------------------------------------------------------------
c Inputs: NPAR = number of parameters available to alter
c n = sample size
c kse = initial estimates (the blu estimates)
c x = array of ordered Pareto variates
c c = shape parameter
C------------------------------------------------------------------
c Outputs: F = value of the function at the final estimates
c kse = revised estimates of scale;
c these are the Kolmogorov minimum distance
c estimates
- ------------------------------------------------------------
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c Calculations:
c z( )= 1 - (I + [x(i)-a]/b)**(-c)
c

c OP(i) ABSE iOn - z(i) I
c

c DO(i) ABSE z(i) - (i-1)/n I
c

C----------------------------------------------------------------------------------

c **# Variable Declarations:
common n,x,c,ablu,bblu,dseed,B,D,Anc,Bnc,BB,aKS,bKS,

I aCVM, bCVM, aRD, bAD, nn,count,aZAD, bZAD, anda, esta, icnt
I ,andb,estb,icntb,andab,estaa,estbb,icntab
I ,aICV,blCV,alKS,bIKS

integer NPAR,NSIG,MAXFN,IOPT,n,c,nn,count(4,S,14),icnt,hh
I ,icntb,icntab

real kse(i),H(l),G(1),W(3),Fx(IB),ablu,bblu,aAD,bAD
I ,B(18),D,Anc,Bnc,BB(18),aKS,bKS,aCVM,bCVM,aZAD,bZAD
1 ,anda(500),esta(5OO),ADI,andb(500),estb(500),andab(588)
I ,estaa(500),estbb( 50),alCV,blCV,alKS,bIKS
I ,zi(18),DP(18),DMO(18),OPLUS,DMINUS,KST

double precision dseed
c *** Calculate the Pareto cdf value [zi(j)] at each point
c and the differences betueen the EDF step function
c * and the cdf points

do 10 j=l,n

zi(j) = 1-(l/(1+(x(j)-ablu)/"se(l)))**c
DP(j) = ABS(j/real(n) - zi.j),
DM(j) = ABS(zi(j) - (j-l)/-eal(n))

10 continue
c *** Select the maximum of the plus and minus differences

OPLUS =MAX(DP(l),OP(Z),DP(3),OP(4),OP(S),DP(6),OP(7)
1 ,]DP(B),OP(9),I]P(10),DP(11),JP(IZ),DP(13),OP(14)
I ,DP(1S),DP(16),OP(17),DP(18))

DMINUS MAX(DM(I),DM(Z),DM(3),DtM(4),D[M(S),DM(6),DM(7)
I ,DIM(8),DM(9),DM(10),DM( li),DM(IZ),DM(13),DM(14)
I ,DM(15),DM(IS),DM(17),DM(18))

c *.* Select the maximum Kolmogorov distance measure and
c set F equal to that distance. F becomes the
c function uhich ZXMIN attempts to minilize by
c altering the values of the location parameter

KST = MAX(OPLUS,DMINUS)
F = KST
return
end
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